P. falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

  1. Xavier Sisquella
  2. Thomas Nebl
  3. Jennifer K Thompson
  4. Lachlan Whitehead
  5. Brian M Malpede
  6. Nichole D Salinas
  7. Kelly Rogers
  8. Niraj H Tolia
  9. Andrea Fleig
  10. Joseph O'Neill
  11. Wai-Hong Tham
  12. F David Horgen
  13. Alan F Cowman  Is a corresponding author
  1. The Walter and Eliza Hall Institute of Medical Research, Australia
  2. Washington University School of Medicine, United States
  3. Hawaii Pacific University, United States
  4. University of Hawaii, United States

Abstract

The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion.

Article and author information

Author details

  1. Xavier Sisquella

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Nebl

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer K Thompson

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Lachlan Whitehead

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian M Malpede

    Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nichole D Salinas

    Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kelly Rogers

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Niraj H Tolia

    Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2689-1337
  9. Andrea Fleig

    Department of Natural Sciences, Hawaii Pacific University, Kaneohe, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joseph O'Neill

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Wai-Hong Tham

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. F David Horgen

    The Queen's Medical Center and John A. Burns School of Medicine, University of Hawaii, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alan F Cowman

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    For correspondence
    cowman@wehi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5145-9004

Funding

Howard Hughes Medical Institute (HHMI International Scholar Award 55007645)

  • Alan F Cowman

National Health and Medical Research Council (NHMRc Program Grant 637406)

  • Alan F Cowman

Australian Research Council (Australian Research Council Future Fellowship)

  • Wai-Hong Tham

National Health and Medical Research Council (IRIISS grant)

  • Xavier Sisquella
  • Thomas Nebl
  • Jennifer K Thompson
  • Lachlan Whitehead
  • Kelly Rogers
  • Joseph O'Neill
  • Wai-Hong Tham
  • Alan F Cowman

National Health and Medical Research Council (1026581)

  • Alan F Cowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Sisquella et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,164
    views
  • 807
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xavier Sisquella
  2. Thomas Nebl
  3. Jennifer K Thompson
  4. Lachlan Whitehead
  5. Brian M Malpede
  6. Nichole D Salinas
  7. Kelly Rogers
  8. Niraj H Tolia
  9. Andrea Fleig
  10. Joseph O'Neill
  11. Wai-Hong Tham
  12. F David Horgen
  13. Alan F Cowman
(2017)
P. falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion
eLife 6:e21083.
https://doi.org/10.7554/eLife.21083

Share this article

https://doi.org/10.7554/eLife.21083

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.