P. falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

  1. Xavier Sisquella
  2. Thomas Nebl
  3. Jennifer K Thompson
  4. Lachlan Whitehead
  5. Brian M Malpede
  6. Nichole D Salinas
  7. Kelly Rogers
  8. Niraj H Tolia
  9. Andrea Fleig
  10. Joseph O'Neill
  11. Wai-Hong Tham
  12. F David Horgen
  13. Alan F Cowman  Is a corresponding author
  1. The Walter and Eliza Hall Institute of Medical Research, Australia
  2. Washington University School of Medicine, United States
  3. Hawaii Pacific University, United States
  4. University of Hawaii, United States

Abstract

The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion.

Article and author information

Author details

  1. Xavier Sisquella

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Nebl

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer K Thompson

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Lachlan Whitehead

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Brian M Malpede

    Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nichole D Salinas

    Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kelly Rogers

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Niraj H Tolia

    Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2689-1337
  9. Andrea Fleig

    Department of Natural Sciences, Hawaii Pacific University, Kaneohe, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joseph O'Neill

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Wai-Hong Tham

    The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. F David Horgen

    The Queen's Medical Center and John A. Burns School of Medicine, University of Hawaii, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Alan F Cowman

    The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    For correspondence
    cowman@wehi.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5145-9004

Funding

Howard Hughes Medical Institute (HHMI International Scholar Award 55007645)

  • Alan F Cowman

National Health and Medical Research Council (NHMRc Program Grant 637406)

  • Alan F Cowman

Australian Research Council (Australian Research Council Future Fellowship)

  • Wai-Hong Tham

National Health and Medical Research Council (IRIISS grant)

  • Xavier Sisquella
  • Thomas Nebl
  • Jennifer K Thompson
  • Lachlan Whitehead
  • Kelly Rogers
  • Joseph O'Neill
  • Wai-Hong Tham
  • Alan F Cowman

National Health and Medical Research Council (1026581)

  • Alan F Cowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Sisquella et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,155
    views
  • 807
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xavier Sisquella
  2. Thomas Nebl
  3. Jennifer K Thompson
  4. Lachlan Whitehead
  5. Brian M Malpede
  6. Nichole D Salinas
  7. Kelly Rogers
  8. Niraj H Tolia
  9. Andrea Fleig
  10. Joseph O'Neill
  11. Wai-Hong Tham
  12. F David Horgen
  13. Alan F Cowman
(2017)
P. falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion
eLife 6:e21083.
https://doi.org/10.7554/eLife.21083

Share this article

https://doi.org/10.7554/eLife.21083

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.