Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly

  1. Joshua Bloomekatz
  2. Reena Singh
  3. Owen WJ Prall
  4. Ariel C Dunn
  5. Megan Vaughan
  6. Chin-San Loo
  7. Richard P Harvey  Is a corresponding author
  8. Deborah Yelon  Is a corresponding author
  1. University of California, San Diego, United States
  2. Victor Chang Cardiac Research Institute, Australia

Abstract

Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis.

Article and author information

Author details

  1. Joshua Bloomekatz

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Reena Singh

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    No competing interests declared.
  3. Owen WJ Prall

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    No competing interests declared.
  4. Ariel C Dunn

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Megan Vaughan

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Chin-San Loo

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Richard P Harvey

    Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    For correspondence
    r.harvey@victorchang.edu.au
    Competing interests
    Richard P Harvey, Reviewing editor, eLife.
  8. Deborah Yelon

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    dyelon@ucsd.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3523-4053

Funding

National Heart, Lung, and Blood Institute (R01HL081911 and R01HL133166)

  • Deborah Yelon

March of Dimes Foundation (1-FY11-493)

  • Deborah Yelon

National Health and Medical Research Council (NHMRC 1074386; 573732; 5737707; 573705)

  • Owen WJ Prall
  • Richard P Harvey

Australian Research Council (Stem Cells Australia SR110001002)

  • Richard P Harvey

American Heart Association (12POST11660038)

  • Joshua Bloomekatz

Australian Heart Foundation (CR 08S 3958)

  • Owen WJ Prall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish work followed protocols approved by the UCSD IACUC (protocol S09125). All mouse experiments were overseen by the Garvan Institute of Medical Research/St. Vincent's Hospital Animal Ethics Committee (projects AEC13/01 and AEC13/02).

Copyright

© 2017, Bloomekatz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,883
    views
  • 616
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua Bloomekatz
  2. Reena Singh
  3. Owen WJ Prall
  4. Ariel C Dunn
  5. Megan Vaughan
  6. Chin-San Loo
  7. Richard P Harvey
  8. Deborah Yelon
(2017)
Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly
eLife 6:e21172.
https://doi.org/10.7554/eLife.21172

Share this article

https://doi.org/10.7554/eLife.21172

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Developmental Biology
    Cora Demler, John C Lawlor ... Natasza A Kurpios
    Research Article

    Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.