The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity

  1. Yeha Kim
  2. Soyeon Lim
  3. Taejeong Ha
  4. You-Hyang Song
  5. Young-In Sohn
  6. Dae-Jin Park
  7. Sun-Soon Paik
  8. Joo-ri Kim-Kaneyama
  9. Mi-Ryoung Song
  10. Amanda Leung
  11. Edward M Levine
  12. In-Beom Kim
  13. Yong Sook Goo
  14. Seung-Hee Lee
  15. Kyung Hwa Kang
  16. Jin Woo Kim  Is a corresponding author
  1. Korea Advanced Institute of Science and Technology, Republic of Korea
  2. Chungbuk National University School of Medicine, Republic of Korea
  3. The Catholic University of Korea, Republic of Korea
  4. Showa University School of Medicine, Japan
  5. Gwangju Institute of Science and Technology, Republic of Korea
  6. Vanderbilt University, United States
  7. KAIST Institute of BioCentury, Republic of Korea

Abstract

The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that Hydrogen peroxide-induced clone 5 (Hic5) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Hic5-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Hic5-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation.

Article and author information

Author details

  1. Yeha Kim

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Soyeon Lim

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Taejeong Ha

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. You-Hyang Song

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Young-In Sohn

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Dae-Jin Park

    Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Sun-Soon Paik

    Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Joo-ri Kim-Kaneyama

    Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Mi-Ryoung Song

    Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Amanda Leung

    Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Edward M Levine

    Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. In-Beom Kim

    Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  13. Yong Sook Goo

    Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  14. Seung-Hee Lee

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9486-5771
  15. Kyung Hwa Kang

    KAIST Institute of BioCentury, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  16. Jin Woo Kim

    Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
    For correspondence
    jinwookim@kaist.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0767-1918

Funding

National Research Foundation of Korea (NRF-2009-00424)

  • Jin Woo Kim

National Research Foundation (NRF-2006-2004289)

  • Kyung Hwa Kang

National Eye Institute (NIH R01-EY013760)

  • Edward M Levine

National Research Foundation of Korea (NRF-2013-056566)

  • Jin Woo Kim

National Research Foundation of Korea (NRF-2014R1A2A2A01003069)

  • Jin Woo Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments using mice were performed according to the regulations of the KAIST-IACUC (KA2012-38).

Copyright

© 2017, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,902
    views
  • 396
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yeha Kim
  2. Soyeon Lim
  3. Taejeong Ha
  4. You-Hyang Song
  5. Young-In Sohn
  6. Dae-Jin Park
  7. Sun-Soon Paik
  8. Joo-ri Kim-Kaneyama
  9. Mi-Ryoung Song
  10. Amanda Leung
  11. Edward M Levine
  12. In-Beom Kim
  13. Yong Sook Goo
  14. Seung-Hee Lee
  15. Kyung Hwa Kang
  16. Jin Woo Kim
(2017)
The LIM protein complex establishes a retinal circuitry of visual adaptation by regulating Pax6 α-enhancer activity
eLife 6:e21303.
https://doi.org/10.7554/eLife.21303

Share this article

https://doi.org/10.7554/eLife.21303

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.