Distributing tasks via multiple input pathways increase cellular survival in stress

  1. Alejandro A Granados
  2. Matthew M Crane
  3. Luis F Montano-Gutierrez
  4. Reiko J Tanaka
  5. Margaritis Voliotis
  6. Peter Swain  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Imperial College London, United Kingdom
  3. University of Exeter, United Kingdom

Abstract

Improving in one aspect of a task can undermine performance in another, but how such opposing demands play out in single cells and impact on fitness is mostly unknown. Here we study budding yeast in dynamic environments of hyperosmotic stress and show how the corresponding signalling network increases cellular survival both by assigning the requirements of high response speed and high response accuracy to two separate input pathways and by having these pathways interact to converge on Hog1, a p38 MAP kinase. Cells with only the less accurate, reflex-like pathway are fitter in sudden stress, whereas cells with only the slow, more accurate pathway are fitter in fluctuating but increasing stress. Our results demonstrate that cellular signalling is vulnerable to trade-offs in performance, but that these trade-offs can be mitigated by assigning the opposing tasks to different signalling subnetworks. Such division of labour could function broadly within cellular signal transduction.

Article and author information

Author details

  1. Alejandro A Granados

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew M Crane

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Luis F Montano-Gutierrez

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Reiko J Tanaka

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0769-9382
  5. Margaritis Voliotis

    Department of Mathematics, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Swain

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    peter.swain@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7489-8587

Funding

Human Frontier Science Program (Research grant)

  • Matthew M Crane
  • Peter Swain

Biotechnology and Biological Sciences Research Council (Responsive mode grant)

  • Matthew M Crane
  • Peter Swain

Engineering and Physical Sciences Research Council (EP/N014391/1)

  • Alejandro A Granados
  • Reiko J Tanaka
  • Margaritis Voliotis

Wellcome Trust (PhD studentship)

  • Luis F Montano-Gutierrez

Consejo Nacional de Ciencia y Tecnología (PhD studentship)

  • Alejandro A Granados
  • Luis F Montano-Gutierrez

SULSA

  • Matthew M Crane
  • Peter Swain

Medical Research Council (Fellowship)

  • Margaritis Voliotis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: September 10, 2016
  2. Accepted: May 12, 2017
  3. Accepted Manuscript published: May 17, 2017 (version 1)
  4. Version of Record published: June 8, 2017 (version 2)

Copyright

© 2017, Granados et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,161
    views
  • 421
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro A Granados
  2. Matthew M Crane
  3. Luis F Montano-Gutierrez
  4. Reiko J Tanaka
  5. Margaritis Voliotis
  6. Peter Swain
(2017)
Distributing tasks via multiple input pathways increase cellular survival in stress
eLife 6:e21415.
https://doi.org/10.7554/eLife.21415

Share this article

https://doi.org/10.7554/eLife.21415

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.