Distributing tasks via multiple input pathways increase cellular survival in stress

  1. Alejandro A Granados
  2. Matthew M Crane
  3. Luis F Montano-Gutierrez
  4. Reiko J Tanaka
  5. Margaritis Voliotis
  6. Peter Swain  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Imperial College London, United Kingdom
  3. University of Exeter, United Kingdom

Abstract

Improving in one aspect of a task can undermine performance in another, but how such opposing demands play out in single cells and impact on fitness is mostly unknown. Here we study budding yeast in dynamic environments of hyperosmotic stress and show how the corresponding signalling network increases cellular survival both by assigning the requirements of high response speed and high response accuracy to two separate input pathways and by having these pathways interact to converge on Hog1, a p38 MAP kinase. Cells with only the less accurate, reflex-like pathway are fitter in sudden stress, whereas cells with only the slow, more accurate pathway are fitter in fluctuating but increasing stress. Our results demonstrate that cellular signalling is vulnerable to trade-offs in performance, but that these trade-offs can be mitigated by assigning the opposing tasks to different signalling subnetworks. Such division of labour could function broadly within cellular signal transduction.

Article and author information

Author details

  1. Alejandro A Granados

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew M Crane

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Luis F Montano-Gutierrez

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Reiko J Tanaka

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0769-9382
  5. Margaritis Voliotis

    Department of Mathematics, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Swain

    SynthSys - Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    peter.swain@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7489-8587

Funding

Human Frontier Science Program (Research grant)

  • Matthew M Crane
  • Peter Swain

Biotechnology and Biological Sciences Research Council (Responsive mode grant)

  • Matthew M Crane
  • Peter Swain

Engineering and Physical Sciences Research Council (EP/N014391/1)

  • Alejandro A Granados
  • Reiko J Tanaka
  • Margaritis Voliotis

Wellcome Trust (PhD studentship)

  • Luis F Montano-Gutierrez

Consejo Nacional de Ciencia y Tecnología (PhD studentship)

  • Alejandro A Granados
  • Luis F Montano-Gutierrez

SULSA

  • Matthew M Crane
  • Peter Swain

Medical Research Council (Fellowship)

  • Margaritis Voliotis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Granados et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,198
    views
  • 428
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro A Granados
  2. Matthew M Crane
  3. Luis F Montano-Gutierrez
  4. Reiko J Tanaka
  5. Margaritis Voliotis
  6. Peter Swain
(2017)
Distributing tasks via multiple input pathways increase cellular survival in stress
eLife 6:e21415.
https://doi.org/10.7554/eLife.21415

Share this article

https://doi.org/10.7554/eLife.21415

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.