Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

  1. Andres M Lebensohn
  2. Ramin Dubey
  3. Leif R Neitzel
  4. Ofelia Tacchelly-Benites
  5. Eungi Yang
  6. Caleb D Marceau
  7. Eric M Davis
  8. Bhaven B Patel
  9. Zahra Bahrami-Nejad
  10. Kyle J Travaglini
  11. Yashi Ahmed
  12. Ethan Lee
  13. Jan E Carette  Is a corresponding author
  14. Rajat Rohatgi  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Vanderbilt University Medical Center, United States
  3. Geisel School of Medicine at Dartmouth College, United States
  4. University of Colorado, Boulder, United States

Abstract

The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, sensitizing and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor APC or casein kinase 1α uncovered new regulatory features at many levels of the pathway. These include a requirement for the transcription factor TFAP4, a role for the DAX domain of AXIN2 in controlling β-catenin activity, a contribution of GPI anchor biosynthetic enzymes and glypicans to R-spondin-potentiated signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Andres M Lebensohn

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ramin Dubey

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Leif R Neitzel

    Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ofelia Tacchelly-Benites

    Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eungi Yang

    Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caleb D Marceau

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Eric M Davis

    Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Bhaven B Patel

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Zahra Bahrami-Nejad

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kyle J Travaglini

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yashi Ahmed

    Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ethan Lee

    Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jan E Carette

    Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    carette@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Rajat Rohatgi

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rrohatgi@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7609-8858

Funding

National Institutes of Health (DP2 AI104557,DP2 GM105448,R01 GM081635,R01 GM103926,RO1 CA105038)

  • Yashi Ahmed
  • Ethan Lee
  • Jan E Carette
  • Rajat Rohatgi

National Science Foundation (DBI-1039423)

  • Yashi Ahmed

David and Lucile Packard Foundation (Fellow Award)

  • Jan E Carette

Helen Hay Whitney Foundation (Novartis Fellowship)

  • Andres M Lebensohn

Stanford University School of Medicine (Josephine Q. Berry Fellowship)

  • Rajat Rohatgi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Lebensohn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,021
    views
  • 1,401
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andres M Lebensohn
  2. Ramin Dubey
  3. Leif R Neitzel
  4. Ofelia Tacchelly-Benites
  5. Eungi Yang
  6. Caleb D Marceau
  7. Eric M Davis
  8. Bhaven B Patel
  9. Zahra Bahrami-Nejad
  10. Kyle J Travaglini
  11. Yashi Ahmed
  12. Ethan Lee
  13. Jan E Carette
  14. Rajat Rohatgi
(2016)
Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling
eLife 5:e21459.
https://doi.org/10.7554/eLife.21459

Share this article

https://doi.org/10.7554/eLife.21459

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Arkadiy K Golov, Alexey A Gavrilov ... Sergey V Razin
    Research Article

    The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions. Finally, leveraging data from published CRISPRi screens, we found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.