1. Cancer Biology
  2. Developmental Biology
Download icon

Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ

  1. Lorenzo Rinaldi
  2. Alexandra Avgustinova
  3. Mercé Martin
  4. Debayan Datta
  5. Guiomar Solanas
  6. Neus Prats
  7. Salvador Aznar Benitah  Is a corresponding author
  1. The Barcelona Institute of Science and Technology, Spain
Research Article
  • Cited 27
  • Views 1,969
  • Annotations
Cite this article as: eLife 2017;6:e21697 doi: 10.7554/eLife.21697

Abstract

The DNA methyltransferase Dnmt3a suppresses tumorigenesis in models of leukemia and lung cancer. Conversely, deregulation of Dnmt3b is thought to generally promote tumorigenesis. However, the role of Dnmt3a and Dnmt3b in many types of cancer remains undefined. Here we show that Dnmt3a and Dnmt3b are dispensable for homeostasis of the murine epidermis. However, loss of Dnmt3a-but not Dnmt3b-increases the number of carcinogen-induced squamous tumors, without affecting tumor progression. Only upon combined deletion of Dnmt3a and Dnmt3b, squamous carcinomas become more aggressive and metastatic. Mechanistically, Dnmt3a promotes the expression of epidermal differentiation genes by interacting with their enhancers, and inhibits the expression of lipid metabolism genes, including PPAR-γ, by directly methylating their promoters. Importantly, inhibition of PPAR-γ partially prevents the increase in tumorigenesis upon deletion of Dnmt3a. Altogether, we demonstrate that Dnmt3a and Dnmt3b protect the epidermis from tumorigenesis, and that squamous carcinomas are sensitive to inhibition of PPAR-γ.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Lorenzo Rinaldi

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra Avgustinova

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Mercé Martin

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Debayan Datta

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Guiomar Solanas

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Neus Prats

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Salvador Aznar Benitah

    Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
    For correspondence
    salvador.aznar-benitah@irbbarcelona.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9059-5049

Funding

National Grant, Spanish Ministry of Economy and Development (BFU2013-47990-P)

  • Lorenzo Rinaldi
  • Alexandra Avgustinova
  • Debayan Datta
  • Guiomar Solanas
  • Salvador Aznar Benitah

European Research Council (STEMCLOCK (309502))

  • Lorenzo Rinaldi
  • Alexandra Avgustinova
  • Guiomar Solanas
  • Salvador Aznar Benitah

Foundation Botin (No reference associated)

  • Lorenzo Rinaldi
  • Alexandra Avgustinova
  • Debayan Datta
  • Guiomar Solanas
  • Salvador Aznar Benitah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the European Union. All of the animals were handled according to approved institutional animal care and use committee (CEEA) protocols (SAB-13-1522) of the Scientific Parc of Barcelona (PCB). The protocol was approved by the Committee on the Ethics of Animal Experiments of the Government of Catalunya.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Publication history

  1. Received: September 21, 2016
  2. Accepted: April 13, 2017
  3. Accepted Manuscript published: April 20, 2017 (version 1)
  4. Version of Record published: May 12, 2017 (version 2)

Copyright

© 2017, Rinaldi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,969
    Page views
  • 457
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Neuroscience
    Susu Pan et al.
    Research Article

    Emerging evidence suggests that the nervous system is involved in tumor development in the periphery, however, the role of central nervous system remains largely unknown. Here, by combining genetic, chemogenetic, pharmacological and electrophysiological approaches, we show that hypothalamic oxytocin (Oxt)-producing neurons modulate colitis-associated cancer (CAC) progression in mice. Depletion or activation of Oxt neurons could augment or suppress CAC progression. Importantly, brain treatment with celastrol, a pentacyclic triterpenoid, excites Oxt neurons and inhibits CAC progression, and this anti-tumor effect was significantly attenuated in Oxt neuron-lesioned mice. Furthermore, brain treatment with celastrol suppresses sympathetic neuronal activity in the celiac-superior mesenteric ganglion (CG-SMG), and activation of β2 adrenergic receptor abolishes the anti-tumor effect of Oxt neuron activation or centrally administered celastrol. Taken together, these findings demonstrate that hypothalamic Oxt neurons regulate CAC progression by modulating the neuronal activity in the CG-SMG. Stimulation of Oxt neurons using chemicals, eg. celastrol, might be a novel strategy for colorectal cancer treatment.

    1. Cancer Biology
    2. Cell Biology
    Lauren K Williams et al.
    Research Article Updated

    The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.