Lipid droplet biology and evolution illuminated by the characterization of a novel Perilipin in teleost fish

  1. James G Granneman  Is a corresponding author
  2. Victoria A Kimler
  3. Huamei Zhang
  4. Xiangqun Ye
  5. Xixia Luo
  6. John H Postlethwait
  7. Ryan Thummel  Is a corresponding author
  1. Wayne State University School of Medicine, United States
  2. Oakland University, United States
  3. University of Oregon, United States

Abstract

Perilipin (PLIN) proteins constitute an ancient family important in lipid droplet (LD) formation and triglyceride metabolism. We identified an additional PLIN clade (plin6) that is unique to teleosts and can be traced to the two whole genome duplications that occurred early in vertebrate evolution. Plin6 is highly expressed in skin xanthophores, which mediate red/yellow pigmentation and trafficking, but not in tissues associated with lipid metabolism. Biochemical and immunochemical analyses demonstrate that zebrafish Plin6 protein targets the surface of pigment-containing carotenoid droplets (CD). Protein kinase A (PKA) activation, which mediates CD dispersion in xanthophores, phosphorylates Plin6 on conserved residues. Knockout of plin6 in zebrafish severely impairs the ability of CD to concentrate carotenoids and prevents tight clustering of CD within carotenoid bodies. Ultrastructural and functional analyses indicate that LD and CD are homologous structures, and that Plin6 was functionalized early in vertebrate evolution for concentrating and trafficking pigment.

Article and author information

Author details

  1. James G Granneman

    Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, United States
    For correspondence
    jgranne@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Victoria A Kimler

    Eye Research Institute, Oakland University, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Huamei Zhang

    Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiangqun Ye

    Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xixia Luo

    Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John H Postlethwait

    Institute of Neuroscience, University of Oregon, Eugene, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ryan Thummel

    Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, United States
    For correspondence
    rthummel@med.wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0522-8704

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (RO1DK076629,RO1DK62292)

  • James G Granneman

NIH Office of the Director (5R01OD011116)

  • John H Postlethwait

National Eye Institute (R21EY019401,P30EY04068)

  • Ryan Thummel

Research to Prevent Blindness (Unrestricted Grant)

  • Ryan Thummel

Wayne State University (Grants Plus,Start-up funds)

  • James G Granneman
  • Ryan Thummel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All protocols used in this study were approved by the Institutional Animal Care and Use Committee at Wayne State University School of Medicine (approval numbers: A12-05-12 and A03-02-13) and were performed in strict compliance with Institutional and NIH Guidelines.

Copyright

© 2017, Granneman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,468
    views
  • 475
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James G Granneman
  2. Victoria A Kimler
  3. Huamei Zhang
  4. Xiangqun Ye
  5. Xixia Luo
  6. John H Postlethwait
  7. Ryan Thummel
(2017)
Lipid droplet biology and evolution illuminated by the characterization of a novel Perilipin in teleost fish
eLife 6:e21771.
https://doi.org/10.7554/eLife.21771

Share this article

https://doi.org/10.7554/eLife.21771

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Ling Cheng, Ian Meliala ... Mikael Björklund
    Research Article

    Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR. Depletion of PEBP1 impaired mitochondrial ISR activation by reducing eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and subsequent ISR gene expression, which was independent of PEBP1’s role in inhibiting the RAF/MEK/ERK pathway. Consistently, overexpression of PEBP1 potentiated ISR activation by heme-regulated inhibitor (HRI) kinase, the principal eIF2α kinase in the mitochondrial ISR pathway. Real-time interaction analysis using luminescence complementation in live cells revealed an interaction between PEBP1 and eIF2α, which was disrupted by eIF2α S51 phosphorylation. These findings suggest a role for PEBP1 in amplifying mitochondrial stress signals, thereby facilitating an effective cellular response to mitochondrial dysfunction. Therefore, PEBP1 may be a potential therapeutic target for diseases associated with mitochondrial dysfunction.