1. Stem Cells and Regenerative Medicine
Download icon

Organoids: Synthetic scaffolds help airway cells reach maturity

  1. Marko Z Nikolić  Is a corresponding author
  2. Emma L Rawlins  Is a corresponding author
  1. University of Cambridge, United Kingdom
Insight
Cite this article as: eLife 2016;5:e21786 doi: 10.7554/eLife.21786
1 figure

Figures

In vitro and in vivo differentiation of lung organoids.

Human pluripotent stem cells (not shown) can be differentiated to become three-dimensional bunches of cells that are fated to anterior foregut endoderm cells. When Dye et al. plated such foregut spheroids (green circles) into a substrate (Matrigel) and cultured them in vitro for approximately 8 weeks (A), they observed levels of differentiation similar to embryonic human lungs, including ciliated cells (light green), basal cells (blue) and rare secretory cells (not shown). However, when Dye et al. seeded foregut spheroids onto synthetic scaffolds and cultured them for approximately 1 week in vitro, and then transplanted them into the epididymal fat pad of immunocompromised mice for 8–15 weeks (B), they observed greater levels of differentiation, including ciliated cells (light green), basal cells (blue), goblet cells (red) and secretory cells (magenta) lining the surfaces of tubular airway-like structures. The organoids also appeared to be connected to the vasculature of the mice.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)