Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice

  1. Ruchira Sharma
  2. Yoshiro Ishimaru
  3. Ian G Davison
  4. Kentaro Ikegami
  5. Ming-Shan Chien
  6. Helena You
  7. Qiuyi Chi
  8. Momoka Kubota
  9. Masafumi Yohda
  10. Michael Ehlers
  11. Hiroaki Matsunami  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Tokyo University of Agriculture and Technology, Japan

Abstract

Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Ruchira Sharma

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2795-7457
  2. Yoshiro Ishimaru

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ian G Davison

    Department of Neurobiology, Duke University Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0998-7676
  4. Kentaro Ikegami

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ming-Shan Chien

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Helena You

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Qiuyi Chi

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Momoka Kubota

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Masafumi Yohda

    Tokyo University of Agriculture and Technology, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael Ehlers

    Department of Neurobiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hiroaki Matsunami

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    For correspondence
    hiroaki.matsunami@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8850-2608

Funding

National Institutes of Health (R01 DC014423)

  • Hiroaki Matsunami

National Institutes of Health (R01 DC012095)

  • Hiroaki Matsunami

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (A161-16-07) of the Duke Animal Care and Use program.

Copyright

© 2017, Sharma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,333
    views
  • 723
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruchira Sharma
  2. Yoshiro Ishimaru
  3. Ian G Davison
  4. Kentaro Ikegami
  5. Ming-Shan Chien
  6. Helena You
  7. Qiuyi Chi
  8. Momoka Kubota
  9. Masafumi Yohda
  10. Michael Ehlers
  11. Hiroaki Matsunami
(2017)
Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice
eLife 6:e21895.
https://doi.org/10.7554/eLife.21895

Share this article

https://doi.org/10.7554/eLife.21895

Further reading

    1. Cell Biology
    Mitsuhiro Abe, Masataka Yanagawa ... Yasushi Sako
    Research Article

    Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.

    1. Cell Biology
    Wonjo Jang, Kanishka Senarath ... Nevin A Lambert
    Tools and Resources

    Classical G-protein-coupled receptor (GPCR) signaling takes place in response to extracellular stimuli and involves receptors and heterotrimeric G proteins located at the plasma membrane. It has recently been established that GPCR signaling can also take place from intracellular membrane compartments, including endosomes that contain internalized receptors and ligands. While the mechanisms of GPCR endocytosis are well understood, it is not clear how well internalized receptors are supplied with G proteins. To address this gap, we use gene editing, confocal microscopy, and bioluminescence resonance energy transfer to study the distribution and trafficking of endogenous G proteins. We show here that constitutive endocytosis is sufficient to supply newly internalized endocytic vesicles with 20–30% of the G protein density found at the plasma membrane. We find that G proteins are present on early, late, and recycling endosomes, are abundant on lysosomes, but are virtually undetectable on the endoplasmic reticulum, mitochondria, and the medial-trans Golgi apparatus. Receptor activation does not change heterotrimer abundance on endosomes. Our findings provide a subcellular map of endogenous G protein distribution, suggest that G proteins may be partially excluded from nascent endocytic vesicles, and are likely to have implications for GPCR signaling from endosomes and other intracellular compartments.