1. Structural Biology and Molecular Biophysics
  2. Neuroscience
Download icon

Cooperative and acute inhibitionby multiple C-terminal motifs of L-type Ca2+ channels

  1. Nan Liu
  2. Yaxiong Yang
  3. Lin Ge
  4. Min Liu
  5. Henry M Colecraft
  6. Xiaodong Liu  Is a corresponding author
  1. Tsinghua University, China
  2. Columbia University, United States
Research Article
  • Cited 4
  • Views 1,874
  • Annotations
Cite this article as: eLife 2017;6:e21989 doi: 10.7554/eLife.21989

Abstract

Inhibitions and antagonists of L-type Ca2+ channels are important to both research and therapeutics. Here, we report C-terminus mediated inhibition (CMI) for CaV1.3 that multiple motifs coordinate to tune down Ca2+ current and Ca2+ influx toward the lower limits determined by end-stage CDI (Ca2+-dependent inactivation). Among IQV (preIQ3-IQ domain), PCRD and DCRD (proximal or distal C-terminal regulatory domain), spatial closeness of any two modules, e.g., by constitutive fusion, facilitates the trio to form the complex, compete against calmodulin, and alter the gating. Acute CMI by rapamycin-inducible heterodimerization helps reconcile the concurrent activation/inactivation attenuations to ensure Ca2+ influx is reduced, in that Ca2+ current activated by depolarization is potently (~65%) inhibited at the peak (full activation), but not later on (end-stage inactivation, ~300 ms). Meanwhile, CMI provides a new paradigm to develop CaV1 inhibitors, the therapeutic potential of which is implied by computational modeling of CaV1.3 dysregulations related to Parkinson's disease.

Article and author information

Author details

  1. Nan Liu

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9606-4732
  2. Yaxiong Yang

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lin Ge

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Min Liu

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Henry M Colecraft

    Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaodong Liu

    X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
    For correspondence
    liuxiaodong@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3171-9611

Funding

National Natural Science Foundation of China (81171382,31370822,81371604)

  • Xiaodong Liu

Natural Science Foundation of Beijing Municipality (7142089)

  • Xiaodong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Publication history

  1. Received: October 5, 2016
  2. Accepted: January 5, 2017
  3. Accepted Manuscript published: January 6, 2017 (version 1)
  4. Version of Record published: January 30, 2017 (version 2)

Copyright

© 2017, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,874
    Page views
  • 352
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Justin D Lormand et al.
    Research Advance

    RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonucleotidase, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC employs similar structural features that distinguish these two classes as dinucleotidases from other exonucleases, the key determinants for dinucleotidase activity are realized through distinct structural scaffolds. The structures together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases indicates convergent evolution as the mechanism of how dinucleotidase activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinucleotidase activity further underlines the important role these analogous proteins play for cell growth.

    1. Structural Biology and Molecular Biophysics
    Matthias Wälchli et al.
    Research Article

    The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.