The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine Levels during zebrafish embryogenesis

  1. Karen Mendelson
  2. Suveg Pandey
  3. Yu Hisano
  4. Frank Carellini
  5. Bhaskar Das
  6. Timothy Hla  Is a corresponding author
  7. Todd Evans  Is a corresponding author
  1. Cornell University, United States
  2. Boston Children's Hospital, United States
  3. Icahn School of Medicine at Mount Sinai, United States
  4. Harvard Medical School, United States

Abstract

Sphingosine-1-phosphate (S1P) is generated through phosphorylation of sphingosine by sphingosine kinases (Sphk1 and Sphk2). We show that sphk2 maternal-zygotic mutant zebrafish embryos (sphk2MZ) display early developmental phenotypes, including a delay in epiboly, depleted S1P levels, elevated levels of sphingosine, and resistance to sphingosine toxicity. The sphk2MZ embryos also have strikingly increased levels of maternal transcripts encoding ceramide synthase 2b (Cers2b), and loss of Cers2b in sphk2MZ embryos phenocopies sphingosine toxicity. An upstream region of the cers2b promoter supports enhanced expression of a reporter gene in sphk2MZ embryos compared to wildtype embryos. Furthermore, ectopic expression of Cers2b protein itself reduces activity of the promoter, and this repression is relieved by exogenous sphingosine. Therefore, the sphk2MZ genome recognizes the lack of sphingosine kinase activity and up-regulates cers2b as a salvage pathway for sphingosine turnover. Cers2b can also function as a sphingolipid-responsive factor to mediate at least part of a feedback regulatory mechanism.

Article and author information

Author details

  1. Karen Mendelson

    Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Suveg Pandey

    Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yu Hisano

    Vascular Biology Program, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Frank Carellini

    Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Bhaskar Das

    Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy Hla

    Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, United States
    For correspondence
    timothy.hla@childrens.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Todd Evans

    Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
    For correspondence
    tre2003@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7148-9849

Funding

National Institutes of Health (HL089934)

  • Timothy Hla

National Institutes of Health (CA077839)

  • Timothy Hla

National Institutes of Health (HL111400)

  • Todd Evans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (2011-100) of the Weill Cornell Medical College.

Copyright

© 2017, Mendelson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,379
    views
  • 277
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karen Mendelson
  2. Suveg Pandey
  3. Yu Hisano
  4. Frank Carellini
  5. Bhaskar Das
  6. Timothy Hla
  7. Todd Evans
(2017)
The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine Levels during zebrafish embryogenesis
eLife 6:e21992.
https://doi.org/10.7554/eLife.21992

Share this article

https://doi.org/10.7554/eLife.21992

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.