Mapping cell type-specific transcriptional enhancers using high affinity, lineage-specific Ep300 bioChIP-seq

  1. Pingzhu Zhou
  2. Fei Gu
  3. Lina Zhang
  4. Brynn N Akerberg
  5. Qing Ma
  6. Kai Li
  7. Aibin He
  8. Zhiqiang Lin
  9. Sean M Stevens
  10. Bin Zhou
  11. William T Pu  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Shanghai University of Traditional Chinese Medicine, China
  3. Chinese Academy of Sciences, China

Abstract

Understanding the mechanisms that regulate cell type-specific transcriptional programs requires developing a lexicon of their genomic regulatory elements. We developed a lineage-selective method to map transcriptional enhancers, regulatory genomic regions that activate transcription, in mice. Since most tissue-specific enhancers are bound by the transcriptional co-activator Ep300, we used Cre-directed, lineage-specific Ep300 biotinylation and pulldown on immobilized streptavidin followed by next generation sequencing of co-precipitated DNA to indentify lineage-specific enhancers. By driving this system with lineage-specific Cre transgenes, we mapped enhancers active in embryonic endothelial cells/blood or skeletal muscle. Analysis of these enhancers identified new transcription factor heterodimer motifs that likely regulate transcription in these lineages. Furthermore, we identified candidate enhancers that regulate adult heart- or lung- specific endothelial cell specialization. Our strategy for tissue-specific protein biotinylation opens new avenues for studying lineage-specific protein-DNA and protein-protein interactions.

Data availability

The following data sets were generated
The following previously published data sets were used
    1. Ren B
    2. Shen Y
    (2012) Transcription Factor Binding Sites by ChIP-seq from ENCODE/LICR
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE36027).
    1. Ren B
    (2016) ChIP-seq from heart (ENCSR646GHA)
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE82850).
    1. Len Pennacchio
    (2016) ChIP-seq from heart (ENCSR123MLY)
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSM2191196).

Article and author information

Author details

  1. Pingzhu Zhou

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Fei Gu

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lina Zhang

    Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Brynn N Akerberg

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6470-6588
  5. Qing Ma

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kai Li

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Aibin He

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3489-2305
  8. Zhiqiang Lin

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sean M Stevens

    Department of Cardiology, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Bin Zhou

    State Key Laboratory of Cell Biology, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  11. William T Pu

    Department of Cardiology, Boston Children's Hospital, Cambridge, United States
    For correspondence
    wpu@pulab.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4551-8079

Funding

National Institutes of Health (U01HL098166; HL095712)

  • William T Pu

American Heart Association (12EIA8440003)

  • William T Pu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deepak Srivastava, Gladstone Institutes, United States

Ethics

Animal experimentation: Animal experiments were performed under protocols approved by the Boston Children's Hospital Animal Care and Use Committee (protocols 13-08-2460R and 13-12-2601).

Version history

  1. Received: October 2, 2016
  2. Accepted: January 23, 2017
  3. Accepted Manuscript published: January 25, 2017 (version 1)
  4. Version of Record published: February 7, 2017 (version 2)
  5. Version of Record updated: April 11, 2017 (version 3)

Copyright

© 2017, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,143
    views
  • 964
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pingzhu Zhou
  2. Fei Gu
  3. Lina Zhang
  4. Brynn N Akerberg
  5. Qing Ma
  6. Kai Li
  7. Aibin He
  8. Zhiqiang Lin
  9. Sean M Stevens
  10. Bin Zhou
  11. William T Pu
(2017)
Mapping cell type-specific transcriptional enhancers using high affinity, lineage-specific Ep300 bioChIP-seq
eLife 6:e22039.
https://doi.org/10.7554/eLife.22039

Share this article

https://doi.org/10.7554/eLife.22039

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.