Extensive horizontal gene transfer in cheese-associated bacteria

  1. Kevin S Bonham
  2. Benjamin E Wolfe
  3. Rachel J Dutton  Is a corresponding author
  1. University of California, San Diego, United States
  2. Tufts University, United States
  3. UC San Diego, United States

Abstract

Acquisition of genes through horizontal gene transfer (HGT) allows microbes to rapidly gain new capabilities and adapt to new or changing environments. Identifying widespread HGT regions within multispecies microbiomes can pinpoint the molecular mechanisms that play key roles in microbiome assembly. We sought to identify horizontally transferred genes within a model microbiome, the cheese rind. Comparing 31 newly-sequenced and 134 previously sequenced bacterial isolates from cheese rinds, we identified over 200 putative horizontally transferred genomic regions containing 4,844 protein coding genes. The largest of these regions are enriched for genes involved in siderophore acquisition, and are widely distributed in cheese rinds in both Europe and the US. These results suggest that horizontal gene transfer (HGT) is prevalent in cheese rind microbiomes, and the identification of genes that are frequently transferred in a particular environment may provide insight into the selective forces shaping microbial communities.

Data availability

The following data sets were generated
The following previously published data sets were used
    1. Wolfe BE
    2. Button JE
    3. Santarelli M
    4. Dutton RJ
    (2014) shotgun metagenomic data from cheese rinds used in Figure 4
    4524487.3, 4524500.3, 4524498.3, 4524496.3, 4524502.3, 4524495.3, 4524488.3, 4524490.3, 4524499.3, 4524497.3, 4524491.3, 4524493.3, 4524501.3, 4524482.3, 4524489.3, 4524483.3, 4524505.3, 4524494.3, 4524486.3, 4524504.3, 4524485.3, and 4524484.3.

Article and author information

Author details

  1. Kevin S Bonham

    Molecular Biology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin E Wolfe

    Biology, Tufts University, Medford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel J Dutton

    Molecular Biology, UC San Diego, La Jolla, United States
    For correspondence
    rjdutton@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2944-2182

Funding

National Institutes of Health (P50 GM068763)

  • Kevin S Bonham
  • Benjamin E Wolfe
  • Rachel J Dutton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Bonham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,385
    views
  • 1,205
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin S Bonham
  2. Benjamin E Wolfe
  3. Rachel J Dutton
(2017)
Extensive horizontal gene transfer in cheese-associated bacteria
eLife 6:e22144.
https://doi.org/10.7554/eLife.22144

Share this article

https://doi.org/10.7554/eLife.22144

Further reading

    1. Genetics and Genomics
    Nathan M Shugarts Devanapally, Aishwarya Sathya ... Antony M Jose
    Research Article

    RNAs in circulation carry sequence-specific regulatory information between cells in plant, animal, and host-pathogen systems. Such RNA can cross generational boundaries, as evidenced by somatic double-stranded RNA (dsRNA) in the nematode Caenorhabditis elegans silencing genes of matching sequence in progeny. Here we dissect the intergenerational path taken by dsRNA from parental circulation and discover that cytosolic import through the dsRNA importer SID-1 in the parental germline and/or developing progeny varies with developmental time and dsRNA substrates. Loss of SID-1 enhances initiation of heritable RNA silencing within the germline and causes changes in the expression of the sid-1-dependent gene sdg-1 that last for more than 100 generations after restoration of SID-1. The SDG-1 protein is enriched in perinuclear germ granules required for heritable RNA silencing but is expressed from a retrotransposon targeted by such silencing. This auto-inhibitory loop suggests how retrotransposons could persist by hosting genes that regulate their own silencing.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.