1. Structural Biology and Molecular Biophysics
  2. Neuroscience
Download icon

Structural basis for subtype-specific inhibition of the P2X7 receptor

  1. Akira Karasawa
  2. Toshimitsu Kawate  Is a corresponding author
  1. Cornell University, United States
Research Article
  • Cited 120
  • Views 6,106
  • Annotations
Cite this article as: eLife 2016;5:e22153 doi: 10.7554/eLife.22153

Abstract

The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.

Article and author information

Author details

  1. Akira Karasawa

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Toshimitsu Kawate

    Department of Molecular Medicine, Cornell University, Ithaca, United States
    For correspondence
    tk499@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5005-2031

Funding

National Institutes of Health (NS072869)

  • Toshimitsu Kawate

National Institutes of Health (GM114379)

  • Toshimitsu Kawate

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institutes of Health, United States

Publication history

  1. Received: October 6, 2016
  2. Accepted: December 8, 2016
  3. Accepted Manuscript published: December 9, 2016 (version 1)
  4. Version of Record published: December 21, 2016 (version 2)
  5. Version of Record updated: September 14, 2017 (version 3)

Copyright

© 2016, Karasawa & Kawate

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,106
    Page views
  • 1,248
    Downloads
  • 120
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Fatima El Alaoui et al.
    Research Article

    Clathrin-mediated endocytosis (CME) is a central trafficking pathway in eukaryotic cells regulated by phosphoinositides. The plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in driving CME initiation. The F-BAR domain only protein 1 and 2 complex (FCHo1/2) is among the early proteins that reach the plasma membrane, but the exact mechanisms triggering its recruitment remain elusive. Here, we show the molecular dynamics of FCHo2 self-assembly on membranes by combining minimal reconstituted in vitro and cellular systems. Our results indicate that PI(4,5)P2 domains assist FCHo2 docking at specific membrane regions, where it self-assembles into ring-like shape protein patches. We show that the binding of FCHo2 on cellular membranes promotes PI(4,5)P2 clustering at the boundary of cargo receptors and that this accumulation enhances clathrin assembly. Thus, our results provide a mechanistic framework that could explain the recruitment of early PI(4,5)P2-interacting proteins at endocytic sites.

    1. Structural Biology and Molecular Biophysics
    Sven Klumpe et al.
    Research Article Updated

    Lamella micromachining by focused ion beam milling at cryogenic temperature (cryo-FIB) has matured into a preparation method widely used for cellular cryo-electron tomography. Due to the limited ablation rates of low Ga+ ion beam currents required to maintain the structural integrity of vitreous specimens, common preparation protocols are time-consuming and labor intensive. The improved stability of new-generation cryo-FIB instruments now enables automated operations. Here, we present an open-source software tool, SerialFIB, for creating automated and customizable cryo-FIB preparation protocols. The software encompasses a graphical user interface for easy execution of routine lamellae preparations, a scripting module compatible with available Python packages, and interfaces with three-dimensional correlative light and electron microscopy (CLEM) tools. SerialFIB enables the streamlining of advanced cryo-FIB protocols such as multi-modal imaging, CLEM-guided lamella preparation and in situ lamella lift-out procedures. Our software therefore provides a foundation for further development of advanced cryogenic imaging and sample preparation protocols.