Systems biology derived source-sink mechanism of BMP gradient formation

  1. Joseph Zinski
  2. Ye Bu
  3. Xu Wang
  4. Wei Dou
  5. David Umulis  Is a corresponding author
  6. Mary Mullins  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States
  2. Purdue University, United States

Abstract

A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.

Article and author information

Author details

  1. Joseph Zinski

    Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ye Bu

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xu Wang

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Dou

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Umulis

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    For correspondence
    dumulis@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary Mullins

    Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    mullins@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9979-1564

Funding

National Institute of General Medical Sciences (R01GM056326)

  • Joseph Zinski
  • Mary Mullins

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD073156,T32 HD08318)

  • Joseph Zinski
  • Ye Bu
  • Xu Wang
  • Wei Dou
  • David Umulis
  • Mary Mullins

National Science Foundation

  • Joseph Zinski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#803105, #804931) of the University of Pennsylvania Perelman School of Medicine.

Copyright

© 2017, Zinski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,099
    views
  • 700
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Zinski
  2. Ye Bu
  3. Xu Wang
  4. Wei Dou
  5. David Umulis
  6. Mary Mullins
(2017)
Systems biology derived source-sink mechanism of BMP gradient formation
eLife 6:e22199.
https://doi.org/10.7554/eLife.22199

Share this article

https://doi.org/10.7554/eLife.22199