Systems biology derived source-sink mechanism of BMP gradient formation

  1. Joseph Zinski
  2. Ye Bu
  3. Xu Wang
  4. Wei Dou
  5. David Umulis  Is a corresponding author
  6. Mary Mullins  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States
  2. Purdue University, United States

Abstract

A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.

Article and author information

Author details

  1. Joseph Zinski

    Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ye Bu

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xu Wang

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Dou

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Umulis

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    For correspondence
    dumulis@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary Mullins

    Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    mullins@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9979-1564

Funding

National Institute of General Medical Sciences (R01GM056326)

  • Joseph Zinski
  • Mary Mullins

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD073156,T32 HD08318)

  • Joseph Zinski
  • Ye Bu
  • Xu Wang
  • Wei Dou
  • David Umulis
  • Mary Mullins

National Science Foundation

  • Joseph Zinski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#803105, #804931) of the University of Pennsylvania Perelman School of Medicine.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Publication history

  1. Received: October 12, 2016
  2. Accepted: August 8, 2017
  3. Accepted Manuscript published: August 9, 2017 (version 1)
  4. Version of Record published: September 8, 2017 (version 2)

Copyright

© 2017, Zinski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,442
    Page views
  • 619
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Zinski
  2. Ye Bu
  3. Xu Wang
  4. Wei Dou
  5. David Umulis
  6. Mary Mullins
(2017)
Systems biology derived source-sink mechanism of BMP gradient formation
eLife 6:e22199.
https://doi.org/10.7554/eLife.22199

Further reading

    1. Computational and Systems Biology
    Zhuang Liu et al.
    Research Article Updated

    MicroRNAs (miR), as important epigenetic control factors, reportedly regulate wound repair. However, our insufficient knowledge of clinically relevant miRs hinders their potential therapeutic use. For this, we performed paired small and long RNA-sequencing and integrative omics analysis in human tissue samples, including matched skin and acute wounds collected at each healing stage and chronic nonhealing venous ulcers (VUs). On the basis of the findings, we developed a compendium (https://www.xulandenlab.com/humanwounds-mirna-mrna), which will be an open, comprehensive resource to broadly aid wound healing research. With this first clinical, wound-centric resource of miRs and mRNAs, we identified 17 pathologically relevant miRs that exhibited abnormal VU expression and displayed their targets enriched explicitly in the VU gene signature. Intermeshing regulatory networks controlled by these miRs revealed their high cooperativity in contributing to chronic wound pathology characterized by persistent inflammation and proliferative phase initiation failure. Furthermore, we demonstrated that miR-34a, miR-424, and miR-516, upregulated in VU, cooperatively suppressed keratinocyte migration and growth while promoting inflammatory response. By combining miR expression patterns with their specific target gene expression context, we identified miRs highly relevant to VU pathology. Our study opens the possibility of developing innovative wound treatment that targets pathologically relevant cooperating miRs to attain higher therapeutic efficacy and specificity.

    1. Computational and Systems Biology
    2. Neuroscience
    Vasileios Dimakopoulos et al.
    Research Article

    The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and – additionally in four participants – recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance.