Systems biology derived source-sink mechanism of BMP gradient formation

  1. Joseph Zinski
  2. Ye Bu
  3. Xu Wang
  4. Wei Dou
  5. David Umulis  Is a corresponding author
  6. Mary Mullins  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States
  2. Purdue University, United States

Abstract

A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.

Article and author information

Author details

  1. Joseph Zinski

    Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ye Bu

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xu Wang

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Dou

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Umulis

    Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, United States
    For correspondence
    dumulis@purdue.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary Mullins

    Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    mullins@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9979-1564

Funding

National Institute of General Medical Sciences (R01GM056326)

  • Joseph Zinski
  • Mary Mullins

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD073156,T32 HD08318)

  • Joseph Zinski
  • Ye Bu
  • Xu Wang
  • Wei Dou
  • David Umulis
  • Mary Mullins

National Science Foundation

  • Joseph Zinski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#803105, #804931) of the University of Pennsylvania Perelman School of Medicine.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Publication history

  1. Received: October 12, 2016
  2. Accepted: August 8, 2017
  3. Accepted Manuscript published: August 9, 2017 (version 1)
  4. Version of Record published: September 8, 2017 (version 2)

Copyright

© 2017, Zinski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,520
    Page views
  • 634
    Downloads
  • 55
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Zinski
  2. Ye Bu
  3. Xu Wang
  4. Wei Dou
  5. David Umulis
  6. Mary Mullins
(2017)
Systems biology derived source-sink mechanism of BMP gradient formation
eLife 6:e22199.
https://doi.org/10.7554/eLife.22199
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Spencer Farrell, Alice E Kane ... Andrew D Rutenberg
    Research Article Updated

    As an organism ages, its health-state is determined by a balance between the processes of damage and repair. Measuring these processes requires longitudinal data. We extract damage and repair transition rates from repeated observations of binary health attributes in mice and humans to explore robustness and resilience, which respectively represent resisting or recovering from damage. We assess differences in robustness and resilience using changes in damage rates and repair rates of binary health attributes. We find a conserved decline with age in robustness and resilience in mice and humans, implying that both contribute to worsening aging health – as assessed by the frailty index (FI). A decline in robustness, however, has a greater effect than a decline in resilience on the accelerated increase of the FI with age, and a greater association with reduced survival. We also find that deficits are damaged and repaired over a wide range of timescales ranging from the shortest measurement scales toward organismal lifetime timescales. We explore the effect of systemic interventions that have been shown to improve health, including the angiotensin-converting enzyme inhibitor enalapril and voluntary exercise for mice. We have also explored the correlations with household wealth for humans. We find that these interventions and factors affect both damage and repair rates, and hence robustness and resilience, in age and sex-dependent manners.

    1. Computational and Systems Biology
    Shunpei Yamauchi, Takashi Nozoe ... Yuichi Wakamoto
    Research Article

    Intracellular states probed by gene expression profiles and metabolic activities are intrinsically noisy, causing phenotypic variations among cellular lineages. Understanding the adaptive and evolutionary roles of such variations requires clarifying their linkage to population growth rates. Extending a cell lineage statistics framework, here we show that a population’s growth rate can be expanded by the cumulants of a fitness landscape that characterize how fitness distributes in a population. The expansion enables quantifying the contribution of each cumulant, such as variance and skewness, to population growth. We introduce a function that contains all the essential information of cell lineage statistics, including mean lineage fitness and selection strength. We reveal a relation between fitness heterogeneity and population growth rate response to perturbation. We apply the framework to experimental cell lineage data from bacteria to mammalian cells, revealing distinct levels of growth rate gain from fitness heterogeneity across environments and organisms. Furthermore, third or higher order cumulants’ contributions are negligible under constant growth conditions but could be significant in regrowing processes from growth-arrested conditions. We identify cellular populations in which selection leads to an increase of fitness variance among lineages in retrospective statistics compared to chronological statistics. The framework assumes no particular growth models or environmental conditions, and is thus applicable to various biological phenomena for which phenotypic heterogeneity and cellular proliferation are important.