Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons

  1. Catherine M Drerup  Is a corresponding author
  2. Amy L Herbert
  3. Kelly R Monk
  4. Alex V Nechiporuk  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Washington University School of Medicine, United States

Abstract

Mitochondrial transport in axons is critical for neural circuit health and function. While several proteins have been found that modulate bidirectional mitochondrial motility, factors that regulate unidirectional mitochondrial transport have been harder to identify. In a genetic screen, we found a zebrafish strain in which mitochondria fail to attach to the dynein retrograde motor. This strain carries a loss-of-function mutation in actr10, a member of the dynein-associated complex dynactin. The abnormal axon morphology and mitochondrial retrograde transport defects observed in actr10 mutants are distinct from dynein and dynactin mutant axonal phenotypes. In addition, Actr10 lacking the dynactin binding domain maintains its ability to bind mitochondria, arguing for a role for Actr10 in dynactin-mitochondria interaction. Finally, genetic interaction studies implicated Drp1 as a partner in Actr10-dependent mitochondrial retrograde transport. Together, this work identifies Actr10 as a factor necessary for dynactin-mitochondria interaction, enhancing our understanding of how mitochondria properly localize in axons.

Article and author information

Author details

  1. Catherine M Drerup

    Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
    For correspondence
    katie.drerup@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0219-3075
  2. Amy L Herbert

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kelly R Monk

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex V Nechiporuk

    Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
    For correspondence
    nechipor@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Neurological Disorders and Stroke (1K99NS086903)

  • Catherine M Drerup

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD072844)

  • Alex V Nechiporuk

OHSU Center for Spatial Systems Biomedicine (GBMEN0245A1)

  • Alex V Nechiporuk

National Institute of Neurological Disorders and Stroke (F31 NS096814)

  • Amy L Herbert

Philip and Seema Needleman (Graduate Student Fellowship)

  • Amy L Herbert

National Multiple Sclerosis Society (Harry Weaver Scholar)

  • Kelly R Monk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations specified in the Oregon Health and Science University Guide for the Care and Use of Laboratory Animals. All animals were handled in accordance with the institutional animal care and use committee (IACUC) protocol # IS00002972.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Version history

  1. Received: October 9, 2016
  2. Accepted: April 12, 2017
  3. Accepted Manuscript published: April 17, 2017 (version 1)
  4. Version of Record published: May 2, 2017 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,689
    Page views
  • 700
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Catherine M Drerup
  2. Amy L Herbert
  3. Kelly R Monk
  4. Alex V Nechiporuk
(2017)
Regulation of mitochondria-dynactin interaction and mitochondrial retrograde transport in axons
eLife 6:e22234.
https://doi.org/10.7554/eLife.22234

Share this article

https://doi.org/10.7554/eLife.22234

Further reading

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Sima Stroganov, Talia Harris ... Michal Neeman
    Research Article Updated

    Background:

    Fetal growth restriction (FGR) is a pregnancy complication in which a newborn fails to achieve its growth potential, increasing the risk of perinatal morbidity and mortality. Chronic maternal gestational hypoxia, as well as placental insufficiency are associated with increased FGR incidence; however, the molecular mechanisms underlying FGR remain unknown.

    Methods:

    Pregnant mice were subjected to acute or chronic hypoxia (12.5% O2) resulting in reduced fetal weight. Placenta oxygen transport was assessed by blood oxygenation level dependent (BOLD) contrast magnetic resonance imaging (MRI). The placentae were analyzed via immunohistochemistry and in situ hybridization. Human placentae were selected from FGR and matched controls and analyzed by immunohistochemistry (IHC). Maternal and cord sera were analyzed by mass spectrometry.

    Results:

    We show that murine acute and chronic gestational hypoxia recapitulates FGR phenotype and affects placental structure and morphology. Gestational hypoxia decreased labyrinth area, increased the incidence of red blood cells (RBCs) in the labyrinth while expanding the placental spiral arteries (SpA) diameter. Hypoxic placentae exhibited higher hemoglobin-oxygen affinity compared to the control. Placental abundance of Bisphosphoglycerate mutase (BPGM) was upregulated in the syncytiotrophoblast and spiral artery trophoblast cells (SpA TGCs) in the murine gestational hypoxia groups compared to the control. Hif1α levels were higher in the acute hypoxia group compared to the control. In contrast, human FGR placentae exhibited reduced BPGM levels in the syncytiotrophoblast layer compared to placentae from healthy uncomplicated pregnancies. Levels of 2,3 BPG, the product of BPGM, were lower in cord serum of human FGR placentae compared to control. Polar expression of BPGM was found in both human and mouse placentae syncytiotrophoblast, with higher expression facing the maternal circulation. Moreover, in the murine SpA TGCs expression of BPGM was concentrated exclusively in the apical cell side, in direct proximity to the maternal circulation.

    Conclusions:

    This study suggests a possible involvement of placental BPGM in maternal-fetal oxygen transfer, and in the pathophysiology of FGR.

    Funding:

    This work was supported by the Weizmann Krenter Foundation and the Weizmann – Ichilov (Tel Aviv Sourasky Medical Center) Collaborative Grant in Biomedical Research, by the Minerva Foundation, by the ISF KillCorona grant 3777/19.

    1. Developmental Biology
    2. Neuroscience
    Simon Desiderio, Frederick Schwaller ... Frederic Marmigere
    Research Article

    Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMRs target-field innervation in mice. Meis2 is specifically expressed in cutaneous LTMRs, and its expression depends on target-derived signals. While LTMRs lacking Meis2 survived and are normally specified, their end-organ innervations, electrophysiological properties, and transcriptome are differentially and markedly affected, resulting in impaired sensory-evoked behavioral responses. These data establish Meis2 as a major transcriptional regulator controlling the orderly formation of sensory neurons innervating peripheral end organs required for light touch.