Structure of protein O-mannose kinase reveals a unique active site architecture

  1. Qinyu Zhu
  2. David Venzke
  3. Ameya S Walimbe
  4. Mary E Anderson
  5. Qiuyu Fu
  6. Lisa N Kinch
  7. Wei Wang
  8. Xing Chen
  9. Nick V Grishin
  10. Niu Huang
  11. Liping Yu
  12. Jack E Dixon
  13. Kevin P Campbell  Is a corresponding author
  14. Junyu Xiao  Is a corresponding author
  1. School of Life Sciences, Peking University, China
  2. Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, United States
  3. National Institute of Biological Sciences, China
  4. University of Texas Southwestern Medical Center, United States
  5. Peking University, China
  6. University of Iowa, United States
  7. University of California, San Diego, United States

Abstract

The 'pseudokinase' SgK196 is a protein O-mannose kinase (POMK) that catalyzes an essential phosphorylation step during biosynthesis of the laminin-binding glycan on α-dystroglycan. However, the catalytic mechanism underlying this activity remains elusive. Here we present the crystal structure of Danio rerio POMK in complex with Mg2+ ions, ADP, aluminum fluoride, and the GalNAc-β3-GlcNAc-β4-Man trisaccharide substrate, thereby providing a snapshot of the catalytic transition state of this unusual kinase. The active site of POMK is established by residues located in non-canonical positions and is stabilized by a disulfide bridge. GalNAc-β3-GlcNAc-β4-Man is recognized by a surface groove, and the GalNAc-β3-GlcNAc moiety mediates the majority of interactions with POMK. Expression of various POMK mutants in POMK knockout cells further validated the functional requirements of critical residues. Our results provide important insights into the ability of POMK to function specifically as a glycan kinase, and highlight the structural diversity of the human kinome.

Article and author information

Author details

  1. Qinyu Zhu

    The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. David Venzke

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ameya S Walimbe

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mary E Anderson

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiuyu Fu

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lisa N Kinch

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wei Wang

    Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xing Chen

    Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Nick V Grishin

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Niu Huang

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Liping Yu

    University of Iowa Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jack E Dixon

    Department of Pharmacology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Kevin P Campbell

    Department of Molecular Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, United States
    For correspondence
    kevin-campbell@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2066-5889
  14. Junyu Xiao

    The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
    For correspondence
    junyuxiao@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1822-1701

Funding

National Natural Science Foundation of China (31570735)

  • Junyu Xiao

National Key Research & Development Plan of China (2016YFC0906000)

  • Junyu Xiao

National Institute of Diabetes and Digestive and Kidney Diseases (DK18849, DK18024)

  • Jack E Dixon

Paul D. Wellstone Muscular Dystrophy Cooperative Research Center (1U54NS053672)

  • Kevin P Campbell

Howard Hughes Medical Institute

  • Jack E Dixon
  • Kevin P Campbell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Zhu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,327
    views
  • 608
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qinyu Zhu
  2. David Venzke
  3. Ameya S Walimbe
  4. Mary E Anderson
  5. Qiuyu Fu
  6. Lisa N Kinch
  7. Wei Wang
  8. Xing Chen
  9. Nick V Grishin
  10. Niu Huang
  11. Liping Yu
  12. Jack E Dixon
  13. Kevin P Campbell
  14. Junyu Xiao
(2016)
Structure of protein O-mannose kinase reveals a unique active site architecture
eLife 5:e22238.
https://doi.org/10.7554/eLife.22238

Share this article

https://doi.org/10.7554/eLife.22238

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.