Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction

  1. Sylvia Dyballa
  2. Thierry Savy
  3. Philipp Germann
  4. Karol Mikula
  5. Mariana Remesikova
  6. Róbert Špir
  7. Andrea Zecca
  8. Nadine Peyriéras
  9. Cristina Pujades  Is a corresponding author
  1. Universitat Pompeu Fabra, Spain
  2. USR3695 CNRS, France
  3. Center for Genomic Regulation, Spain
  4. Slovak University of Technology, Slovakia

Abstract

Reconstructing the lineage of cells is central to understanding how the wide diversity of cell types develops. Here, we provide the neurosensory lineage reconstruction of a complex sensory organ, the inner ear, by imaging zebrafish embryos in vivo over an extended timespan, combining cell tracing and cell fate marker expression over time. We deliver the first dynamic map of early neuronal and sensory progenitor pools in the whole otic vesicle. It highlights the remodeling of the neuronal progenitor domain upon neuroblast delamination, and reveals that the order and place of neuroblasts' delamination from the otic epithelium prefigure their position within the SAG. Sensory and non-sensory domains harbor different proliferative activity contributing distinctly to the overall growth of the structure. Therefore, the otic vesicle case exemplifies a generic morphogenetic process where spatial and temporal cues regulate cell fate and functional organization of the rudiment of the definitive organ.

Article and author information

Author details

  1. Sylvia Dyballa

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Thierry Savy

    Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Philipp Germann

    Systems Biology Unit, Center for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2057-4883
  4. Karol Mikula

    Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
    Competing interests
    The authors declare that no competing interests exist.
  5. Mariana Remesikova

    Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
    Competing interests
    The authors declare that no competing interests exist.
  6. Róbert Špir

    Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
    Competing interests
    The authors declare that no competing interests exist.
  7. Andrea Zecca

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Nadine Peyriéras

    Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Cristina Pujades

    Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    cristina.pujades@upf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6423-7451

Funding

Ministerio de Economía y Competitividad (BFU2012-31994)

  • Cristina Pujades

Unidad de Excelencia María de Maetzu (2015-19 MDM-2014-0370 to DCEXS-UPF)

  • Sylvia Dyballa
  • Andrea Zecca
  • Cristina Pujades

Centro de Excelencia Severo Ochoa (2013-17 SEV-2012-0208 to CRG)

  • Philipp Germann

Agence Nationale de la Recherche (ANR-10-INBS-04)

  • Nadine Peyriéras

Agence Nationale de la Recherche (ANR-11-EQPX-0029)

  • Nadine Peyriéras

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SINERGIA CRSII3 141918)

  • Philipp Germann

Becas de la Generalitat de Catalunya (Predoctoral FI-fellowship)

  • Sylvia Dyballa
  • Andrea Zecca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the European Regulations. Zebrafish embryos were obtained by mating of adult fish using standard methods. All fish strains were maintained individually as inbred lines. All protocols used have been approved by the Institutional Animal Care and Use Ethic Committee (PRBB-IACUEC), and implemented according to national and European regulations. All experiments were carried out in accordance with the principles of the 3Rs. All our experiments were carried out using the CPC16-008/9125 protocol approved by the Generalitat of Catalonia.

Copyright

© 2017, Dyballa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,747
    views
  • 396
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sylvia Dyballa
  2. Thierry Savy
  3. Philipp Germann
  4. Karol Mikula
  5. Mariana Remesikova
  6. Róbert Špir
  7. Andrea Zecca
  8. Nadine Peyriéras
  9. Cristina Pujades
(2017)
Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction
eLife 6:e22268.
https://doi.org/10.7554/eLife.22268

Share this article

https://doi.org/10.7554/eLife.22268

Further reading

    1. Cell Biology
    Johanna Odenwald, Bernardo Gabiatti ... Susanne Kramer
    Research Article

    Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an ‘all in one’ solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.

    1. Cell Biology
    Jessica Y Chotiner, N Adrian Leu ... P Jeremy Wang
    Research Article

    Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.