The neuropeptide F/nitric oxide pathway is essential for shaping locomotor plasticity underlying locust phase transition

  1. Li Hou
  2. Pengcheng Yang
  3. Feng Jiang
  4. Qing Liu
  5. Xianhui Wang  Is a corresponding author
  6. Le Kang  Is a corresponding author
  1. Institute of Zoology, Chinese Academy of Sciences, China
  2. Chinese Academy of Sciences, China

Abstract

Behavioral plasticity is widespread in swarming animals, however little is known about its underlying neural and molecular mechanisms. Here, we report that a neuropeptide F (NPF)/nitric oxide (NO) pathway plays a critical role in the locomotor plasticity of swarming migratory locusts. Two related neuropeptides, NPF1a and NPF2, show reduced levels of their encoding transcripts during crowding, and the transcript levels of their receptors significantly increase during locust isolation. Both of these NPFs have suppressive effects on phase-related locomotor activity. A key downstream mediator for both NPFs is nitric oxide synthase (NOS) which regulates phase-related locomotor activity by controlling NO synthesis in the locust brain. Mechanistically, NPF1a and NPF2 modify NOS activity by separately suppressing its phosphorylation and lowering its transcript level, effects that are mediated by their respective receptors. Our results uncover a hierarchical neurochemical mechanism underlying behavioral plasticity in the swarming locust and provide insights into the NPF/NO axis.

Data availability

The following data sets were generated
    1. Yang PC
    (2016) Locusta migratoria transcriptome
    Publicly available at the NCBI Sequence Read Archive (accession no: SRP092214).

Article and author information

Author details

  1. Li Hou

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Pengcheng Yang

    Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Feng Jiang

    Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qing Liu

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Xianhui Wang

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    wangxh@ioz.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
  6. Le Kang

    State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
    For correspondence
    lkang@ioz.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4262-2329

Funding

Chinese Academy of Sciences (Strategic Priority Research Program (Grant NO. XDB11010000))

  • Xianhui Wang
  • Le Kang

National Natural Science Foundation of China (Youth fund (Grant NO. 31601875))

  • Li Hou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Hou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,450
    views
  • 530
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Li Hou
  2. Pengcheng Yang
  3. Feng Jiang
  4. Qing Liu
  5. Xianhui Wang
  6. Le Kang
(2017)
The neuropeptide F/nitric oxide pathway is essential for shaping locomotor plasticity underlying locust phase transition
eLife 6:e22526.
https://doi.org/10.7554/eLife.22526

Share this article

https://doi.org/10.7554/eLife.22526

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.