Mechanistic Insights into Neurotransmitter Release and Presynaptic Plasticity from the Crystal Structure of Munc13-1 C1C2BMUN

  1. Junjie Xu
  2. Marcial Camacho
  3. Yibin Xu
  4. Vicotoria Esser
  5. Xiaoxia Liu
  6. Thorsten Trimbuch
  7. Yun-Zu Pan
  8. Cong Ma
  9. Diana R Tomchick  Is a corresponding author
  10. Christian Rosenmund  Is a corresponding author
  11. Josep Rizo  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Charité-Universitätsmedizin Berlin, Germany
  3. Huazhong University of Science and Technology, China

Abstract

Munc13-1 acts as a master regulator of neurotransmitter release, mediating docking-priming of synaptic vesicles and diverse presynaptic plasticity processes. It is unclear how the functions of the multiple domains of Munc13-1 are coordinated. The crystal structure of a Munc13-1 fragment including its C1, C2B and MUN domains (C1C2BMUN) reveals a 19.5 nm-long multi-helical structure with the C1 and C2B domains packed at one end. The similar orientations of the respective diacyglycerol- and Ca2+-binding sites of the C1 and C2B domains suggest that the two domains cooperate in plasma-membrane binding and that activation of Munc13-1 by Ca2+ and diacylglycerol during short-term presynaptic plasticity are closely interrelated. Electrophysiological experiments in mouse neurons support the functional importance of the domain interfaces observed in C1C2BMUN. The structure imposes key constraints for models of neurotransmitter release and suggests that Munc13-1 bridges the vesicle and plasma membranes from the periphery of the membrane-membrane interface.

Data availability

The following data sets were generated
    1. Rizo et al.
    (2016) C1C2BMUN structure
    Publicly available at the Protein Data Bank (accession no: 5UE8).
    1. Rizo et al.
    (2016) Refined MUN domain structure
    Publicly available at the Protein Data Bank (accession no: 5UF7).

Article and author information

Author details

  1. Junjie Xu

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Marcial Camacho

    Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Yibin Xu

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Vicotoria Esser

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Xiaoxia Liu

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Thorsten Trimbuch

    Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  7. Yun-Zu Pan

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  8. Cong Ma

    Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7814-0500
  9. Diana R Tomchick

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    diana.tomchick@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7529-4643
  10. Christian Rosenmund

    Department of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    christian.rosenmund@charite.de
    Competing interests
    Christian Rosenmund, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3905-2444
  11. Josep Rizo

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Jose.Rizo-Rey@UTSouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1773-8311

Funding

National Institutes of Health (R35 NS097333)

  • Josep Rizo

Welch Foundation (I-1304)

  • Josep Rizo

German Research Council (SFB958)

  • Christian Rosenmund

German Research Council (SFB665)

  • Christian Rosenmund

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal welfare committees of Charité Medical University and the Berlin state government Agency for Health and Social Services approved all protocols for animal maintenance and experiments (license no. T 0220/09).

Copyright

© 2017, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,062
    views
  • 762
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junjie Xu
  2. Marcial Camacho
  3. Yibin Xu
  4. Vicotoria Esser
  5. Xiaoxia Liu
  6. Thorsten Trimbuch
  7. Yun-Zu Pan
  8. Cong Ma
  9. Diana R Tomchick
  10. Christian Rosenmund
  11. Josep Rizo
(2017)
Mechanistic Insights into Neurotransmitter Release and Presynaptic Plasticity from the Crystal Structure of Munc13-1 C1C2BMUN
eLife 6:e22567.
https://doi.org/10.7554/eLife.22567

Share this article

https://doi.org/10.7554/eLife.22567

Further reading

    1. Structural Biology and Molecular Biophysics
    Giuseppe Deganutti, Ludovico Pipito ... Christopher Arthur Reynolds
    Research Article

    The structural basis for the pharmacology of human G protein-coupled receptors (GPCRs), the most abundant membrane proteins and the target of about 35% of approved drugs, is still a matter of intense study. What makes GPCRs challenging to study is the inherent flexibility and the metastable nature of interaction with extra- and intracellular partners that drive their effects. Here, we present a molecular dynamics (MD) adaptive sampling algorithm, namely multiple walker supervised molecular dynamics (mwSuMD), to address complex structural transitions involving GPCRs without energy input. We first report the binding and unbinding of the vasopressin peptide from its receptor V2. Successively, we present the complete transition of the glucagon-like peptide-1 receptor (GLP-1R) from inactive to active, agonist and Gs-bound state, and the guanosine diphosphate (GDP) release from Gs. To our knowledge, this is the first time the whole sequence of events leading from an inactive GPCR to the GDP release is simulated without any energy bias. We demonstrate that mwSuMD can address complex binding processes intrinsically linked to protein dynamics out of reach of classic MD.

    1. Structural Biology and Molecular Biophysics
    Mia L Abramsson, Robin A Corey ... Michael Landreh
    Research Article

    Integral membrane proteins carry out essential functions in the cell, and their activities are often modulated by specific protein-lipid interactions in the membrane. Here, we elucidate the intricate role of cardiolipin (CDL), a regulatory lipid, as a stabilizer of membrane proteins and their complexes. Using the in silico-designed model protein TMHC4_R (ROCKET) as a scaffold, we employ a combination of molecular dynamics simulations and native mass spectrometry to explore the protein features that facilitate preferential lipid interactions and mediate stabilization. We find that the spatial arrangement of positively charged residues as well as local conformational flexibility are factors that distinguish stabilizing from non-stabilizing CDL interactions. However, we also find that even in this controlled, artificial system, a clear-cut distinction between binding and stabilization is difficult to attain, revealing that overlapping lipid contacts can partially compensate for the effects of binding site mutations. Extending our insights to naturally occurring proteins, we identify a stabilizing CDL site within the E. coli rhomboid intramembrane protease GlpG and uncover its regulatory influence on enzyme substrate preference. In this work, we establish a framework for engineering functional lipid interactions, paving the way for the design of proteins with membrane-specific properties or functions.