The pioneer factor OCT4 requires BRG1 to functionally mature gene regulatory elements in mouse embryonic stem cells
Abstract
Pioneer transcription factors recognise and bind their target sequences in inaccessible chromatin to establish new transcriptional networks during development and cellular reprogramming. During this process, pioneer factors establish an accessible chromatin state to facilitate additional transcription factor binding, yet how different pioneer factors achieve this remains unclear. Here, we discover that the pluripotency-associated pioneer factor OCT4 binds chromatin to shape accessibility, transcription factor co-binding, and regulatory element function in mouse embryonic stem cells. Chromatin accessibility at OCT4-bound sites requires the chromatin remodeller BRG1, which is recruited to these sites by OCT4. BRG1 occupancy supports transcription factor binding and expression of the pluripotency-associated transcriptome. Furthermore, the requirement for BRG1 in shaping OCT4 binding reflects how these target sites are used during cellular reprogramming and early mouse development. Together this reveals a distinct requirement for a chromatin remodeller in shaping the activity of the pioneer factor OCT4 and regulating the pluripotency network.
Data availability
-
The pioneer factor OCT4 requires BRG1 to functionally mature gene regulatory elements in mouse embryonic stem cellsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE87822).
-
A comparative encyclopedia of DNA elements in the mouse genomePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE49847).
-
Enhancer Decommissioning by LSD1 During Embryonic Stem Cell DifferentiationPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE27844).
-
DNaseI Hypersensitivity by Digital DNaseI from ENCODE/University of WashingtonPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE37074).
-
INO80 complex in the core regulatory network governing ESC self-renewal [ChIP-Seq]Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE49137).
-
Genome-wide distribution and function of ATP-dependent chromatin remodelers in embryonic stem cellsPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE64825).
-
Multiphasic and dynamic changes in alternative splicing during induction of pluripotency are coordinated by numerous RNA binding proteins [iPS]Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE70022).
-
Expression data from OSKM-mediated 2nd reprogramming cells and the corresponding iPS cell linePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE67462).
-
The landscape of accessible chromatin in mammalian pre-implantation embryos (ATAC-Seq)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE66581).
-
Establishing Chromatin Regulatory Landscape during Mouse Preimplantation DevelopmentPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE76642).
Article and author information
Author details
Funding
Wellcome (098024/Z/11/Z)
- Robert J Klose
European Research Council (681440)
- Robert J Klose
Exeter College, University of Oxford (Monsanto Senior Research Fellowship)
- Robert J Klose
Lister Institute of Preventive Medicine
- Robert J Klose
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2017, King & Klose
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,604
- views
-
- 1,596
- downloads
-
- 227
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
Haploinsufficiency for GATA6 is associated with congenital heart disease (CHD) with variable comorbidity of pancreatic or diaphragm defects, although the etiology of disease is not well understood. Here, we used cardiac directed differentiation from human embryonic stem cells (hESCs) as a platform to study GATA6 function during early cardiogenesis. GATA6 loss-of-function hESCs had a profound impairment in cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation due to early defects during the mesendoderm and lateral mesoderm patterning stages. Profiling by RNA-seq and CUT&RUN identified genes of the WNT and BMP programs regulated by GATA6 during early mesoderm patterning. Furthermore, interactome analysis detected GATA6 binding with developmental transcription factors and chromatin remodelers, suggesting cooperative regulation of cardiac lineage gene accessibility. We show that modulating WNT and BMP inputs during the first 48 hr of cardiac differentiation is sufficient to partially rescue CPC and CM defects in GATA6 heterozygous and homozygous mutant hESCs. This study provides evidence of the regulatory functions for GATA6 directing human precardiac mesoderm patterning during the earliest stages of cardiogenesis to further our understanding of haploinsufficiency causing CHD and the co-occurrence of cardiac and other organ defects caused by human GATA6 mutations.
-
- Cell Biology
- Stem Cells and Regenerative Medicine
Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.