1. Stem Cells and Regenerative Medicine
  2. Chromosomes and Gene Expression
Download icon

The pioneer factor OCT4 requires BRG1 to functionally mature gene regulatory elements in mouse embryonic stem cells

  1. Hamish W King
  2. Robert J Klose  Is a corresponding author
  1. University of Oxford, United Kingdom
Research Article
  • Cited 64
  • Views 6,402
  • Annotations
Cite this article as: eLife 2017;6:e22631 doi: 10.7554/eLife.22631

Abstract

Pioneer transcription factors recognise and bind their target sequences in inaccessible chromatin to establish new transcriptional networks during development and cellular reprogramming. During this process, pioneer factors establish an accessible chromatin state to facilitate additional transcription factor binding, yet how different pioneer factors achieve this remains unclear. Here, we discover that the pluripotency-associated pioneer factor OCT4 binds chromatin to shape accessibility, transcription factor co-binding, and regulatory element function in mouse embryonic stem cells. Chromatin accessibility at OCT4-bound sites requires the chromatin remodeller BRG1, which is recruited to these sites by OCT4. BRG1 occupancy supports transcription factor binding and expression of the pluripotency-associated transcriptome. Furthermore, the requirement for BRG1 in shaping OCT4 binding reflects how these target sites are used during cellular reprogramming and early mouse development. Together this reveals a distinct requirement for a chromatin remodeller in shaping the activity of the pioneer factor OCT4 and regulating the pluripotency network.

Article and author information

Author details

  1. Hamish W King

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5972-8926
  2. Robert J Klose

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    rob.klose@bioch.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8726-7888

Funding

Wellcome (098024/Z/11/Z)

  • Robert J Klose

European Research Council (681440)

  • Robert J Klose

Exeter College, University of Oxford (Monsanto Senior Research Fellowship)

  • Robert J Klose

Lister Institute of Preventive Medicine

  • Robert J Klose

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irwin Davidson, Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Publication history

  1. Received: October 26, 2016
  2. Accepted: March 9, 2017
  3. Accepted Manuscript published: March 13, 2017 (version 1)
  4. Accepted Manuscript updated: March 15, 2017 (version 2)
  5. Version of Record published: April 21, 2017 (version 3)

Copyright

© 2017, King & Klose

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,402
    Page views
  • 1,237
    Downloads
  • 64
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Luisa F Arias Padilla et al.
    Research Article

    The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of germ cells cystic proliferation. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.

    1. Physics of Living Systems
    2. Stem Cells and Regenerative Medicine
    Simona Hankeova et al.
    Research Article

    Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.