Neural markers of predictive coding under perceptual uncertainty revealed with Hierarchical Frequency Tagging

  1. Noam Gordon  Is a corresponding author
  2. Roger Koenig-Robert
  3. Naotsugu Tsuchiya
  4. Jeroen van Boxtel
  5. Jakob Hohwy  Is a corresponding author
  1. Monash University, Australia
  2. The University of New South Wales, Australia

Abstract

There is a growing understanding that both top-down and bottom-up signals underlie perception. But it is not known how these signals integrate with each other and how this depends on the perceived stimuli's predictability. 'Predictive coding' theories describe this integration in terms of how well top-down predictions fit with bottom-up sensory input. Identifying neural markers for such signal integration is therefore essential for the study of perception and predictive coding theories. To achieve this, we combined EEG methods that preferentially tag different levels in the visual hierarchy. Importantly, we examined intermodulation components as a measure of integration between these signals. Our results link the different signals to core aspects of predictive coding, and suggest that top-down predictions indeed integrate with bottom-up signals in a manner that is modulated by the predictability of the sensory input, providing evidence for predictive coding and opening new avenues to studying such interactions in perception.

Article and author information

Author details

  1. Noam Gordon

    Cognition and Philosophy Lab, Philosophy Department, Monash University, Clayton, Australia
    For correspondence
    noam.gordon@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4438-7449
  2. Roger Koenig-Robert

    School of Psychology, The University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8767-3552
  3. Naotsugu Tsuchiya

    Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeroen van Boxtel

    Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2643-0474
  5. Jakob Hohwy

    Cognition and Philosophy Lab, Philosophy Department, Monash University, Clayton, Australia
    For correspondence
    jakob.hohwy@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3906-3060

Funding

Australian Research Council (DP130100194)

  • Roger Koenig-Robert
  • Naotsugu Tsuchiya

Australian Research Council (FT120100619)

  • Naotsugu Tsuchiya

Australian Research Council (FT100100322)

  • Jakob Hohwy

Australian Research Council (DP160102770)

  • Jakob Hohwy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants gave their written consent to participate in the experiment. Experimental procedures were approved by the Monash University Human Research Ethics Committee (CF12/2542 - 2012001375)

Copyright

© 2017, Gordon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,677
    views
  • 946
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noam Gordon
  2. Roger Koenig-Robert
  3. Naotsugu Tsuchiya
  4. Jeroen van Boxtel
  5. Jakob Hohwy
(2017)
Neural markers of predictive coding under perceptual uncertainty revealed with Hierarchical Frequency Tagging
eLife 6:e22749.
https://doi.org/10.7554/eLife.22749

Share this article

https://doi.org/10.7554/eLife.22749

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.