Neural markers of predictive coding under perceptual uncertainty revealed with Hierarchical Frequency Tagging

  1. Noam Gordon  Is a corresponding author
  2. Roger Koenig-Robert
  3. Naotsugu Tsuchiya
  4. Jeroen van Boxtel
  5. Jakob Hohwy  Is a corresponding author
  1. Monash University, Australia
  2. The University of New South Wales, Australia

Abstract

There is a growing understanding that both top-down and bottom-up signals underlie perception. But it is not known how these signals integrate with each other and how this depends on the perceived stimuli's predictability. 'Predictive coding' theories describe this integration in terms of how well top-down predictions fit with bottom-up sensory input. Identifying neural markers for such signal integration is therefore essential for the study of perception and predictive coding theories. To achieve this, we combined EEG methods that preferentially tag different levels in the visual hierarchy. Importantly, we examined intermodulation components as a measure of integration between these signals. Our results link the different signals to core aspects of predictive coding, and suggest that top-down predictions indeed integrate with bottom-up signals in a manner that is modulated by the predictability of the sensory input, providing evidence for predictive coding and opening new avenues to studying such interactions in perception.

Article and author information

Author details

  1. Noam Gordon

    Cognition and Philosophy Lab, Philosophy Department, Monash University, Clayton, Australia
    For correspondence
    noam.gordon@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4438-7449
  2. Roger Koenig-Robert

    School of Psychology, The University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8767-3552
  3. Naotsugu Tsuchiya

    Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeroen van Boxtel

    Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2643-0474
  5. Jakob Hohwy

    Cognition and Philosophy Lab, Philosophy Department, Monash University, Clayton, Australia
    For correspondence
    jakob.hohwy@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3906-3060

Funding

Australian Research Council (DP130100194)

  • Roger Koenig-Robert
  • Naotsugu Tsuchiya

Australian Research Council (FT120100619)

  • Naotsugu Tsuchiya

Australian Research Council (FT100100322)

  • Jakob Hohwy

Australian Research Council (DP160102770)

  • Jakob Hohwy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants gave their written consent to participate in the experiment. Experimental procedures were approved by the Monash University Human Research Ethics Committee (CF12/2542 - 2012001375)

Reviewing Editor

  1. Klaas Enno Stephan, University of Zurich and ETH Zurich, Switzerland

Publication history

  1. Received: October 27, 2016
  2. Accepted: February 26, 2017
  3. Accepted Manuscript published: February 28, 2017 (version 1)
  4. Version of Record published: March 21, 2017 (version 2)

Copyright

© 2017, Gordon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,895
    Page views
  • 868
    Downloads
  • 33
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noam Gordon
  2. Roger Koenig-Robert
  3. Naotsugu Tsuchiya
  4. Jeroen van Boxtel
  5. Jakob Hohwy
(2017)
Neural markers of predictive coding under perceptual uncertainty revealed with Hierarchical Frequency Tagging
eLife 6:e22749.
https://doi.org/10.7554/eLife.22749

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Kiri Choi, Won Kyu Kim, Changbong Hyeon
    Research Article

    The projection neurons (PNs), reconstructed from electron microscope (EM) images of the Drosophila olfactory system, offer a detailed view of neuronal anatomy, providing glimpses into information flow in the brain. About 150 uPNs constituting 58 glomeruli in the antennal lobe (AL) are bundled together in the axonal extension, routing the olfactory signal received at AL to mushroom body (MB) calyx and lateral horn (LH). Here we quantify the neuronal organization in terms of the inter-PN distances and examine its relationship with the odor types sensed by Drosophila. The homotypic uPNs that constitute glomeruli are tightly bundled and stereotyped in position throughout the neuropils, even though the glomerular PN organization in AL is no longer sustained in the higher brain center. Instead, odor-type dependent clusters consisting of multiple homotypes innervate the MB calyx and LH. Pheromone-encoding and hygro/thermo-sensing homotypes are spatially segregated in MB calyx, whereas two distinct clusters of food-related homotypes are found in LH in addition to the segregation of pheromone-encoding and hygro/thermo-sensing homotypes. We find that there are statistically significant associations between the spatial organization among a group of homotypic uPNs and certain stereotyped olfactory responses. Additionally, the signals from some of the tightly bundled homotypes converge to a specific group of lateral horn neurons (LHNs), which indicates that homotype (or odor type) specific integration of signals occurs at the synaptic interface between PNs and LHNs. Our findings suggest that before neural computation in the inner brain, some of the olfactory information are already encoded in the spatial organization of uPNs, illuminating that a certain degree of labeled-line strategy is at work in the Drosophila olfactory system.

    1. Neuroscience
    Hideaki Tomita, Kelly M Hines ... Libin Xu
    Research Article Updated

    Defective 3β-hydroxysterol-Δ7 -reductase (DHCR7) in the developmental disorder, Smith-Lemli-Opitz syndrome (SLOS), results in a deficiency in cholesterol and accumulation of its precursor, 7-dehydrocholesterol (7-DHC). Here, we show that loss of DHCR7 causes accumulation of 7-DHC-derived oxysterol metabolites, premature neurogenesis from murine or human cortical neural precursors, and depletion of the cortical precursor pool, both in vitro and in vivo. We found that a major oxysterol, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), mediates these effects by initiating crosstalk between glucocorticoid receptor (GR) and neurotrophin receptor kinase TrkB. Either loss of DHCR7 or direct exposure to DHCEO causes hyperactivation of GR and TrkB and their downstream MEK-ERK-C/EBP signaling pathway in cortical neural precursors. Moreover, direct inhibition of GR activation with an antagonist or inhibition of DHCEO accumulation with antioxidants rescues the premature neurogenesis phenotype caused by the loss of DHCR7. These results suggest that GR could be a new therapeutic target against the neurological defects observed in SLOS.