Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels

  1. Kara E Zang
  2. Elver Ho
  3. Niels Ringstad  Is a corresponding author
  1. NYU Langone School of Medicine, United States

Abstract

Serotonin is an evolutionarily ancient molecule that functions in generating and modulating many behavioral states. Although much is known about how serotonin acts on its cellular targets, how serotonin release is regulated in vivo remains poorly understood. In the nematode C. elegans, serotonin neurons that drive female reproductive behavior are directly modulated by inhibitory neuropeptides. Here, we report the isolation of mutants in which inhibitory neuropeptides fail to properly modulate serotonin neurons and the behavior they mediate. The corresponding mutations affect the T-type calcium channel CCA-1 and symmetrically re-tune its voltage-dependencies of activation and inactivation towards more hyperpolarized potentials. This shift in voltage dependency strongly and specifically bypasses the behavioral and cell physiological effects of peptidergic inhibition on serotonin neurons. Our results indicate that T-type calcium channels are critical regulators of a C. elegans serotonergic circuit and demonstrate a mechanism in which T-type channels functionally gate inhibitory modulation in vivo.

Article and author information

Author details

  1. Kara E Zang

    Skirball Institute for Biomolecular Medicine, NYU Langone School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elver Ho

    Skirball Institute for Biomolecular Medicine, NYU Langone School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Niels Ringstad

    Skirball Institute for Biomolecular Medicine, NYU Langone School of Medicine, New York, United States
    For correspondence
    Niels.Ringstad@med.nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8679-2269

Funding

National Institute of General Medical Sciences (R01-098320)

  • Niels Ringstad

National Institute of General Medical Sciences (R01-113182)

  • Niels Ringstad

National Institute of Neurological Disorders and Stroke (F31NS089232)

  • Kara E Zang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal subjects (Xenopus laevis frogs) were used in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to the approved institutional animal care and use committee (IACUC) protocol #131102-03.

Copyright

© 2017, Zang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,901
    views
  • 406
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kara E Zang
  2. Elver Ho
  3. Niels Ringstad
(2017)
Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels
eLife 6:e22771.
https://doi.org/10.7554/eLife.22771

Share this article

https://doi.org/10.7554/eLife.22771

Further reading

    1. Neuroscience
    François Kroll, Joshua Donnelly ... Jason Rihel
    Research Article

    By exposing genes associated with disease, genomic studies provide hundreds of starting points that should lead to druggable processes. However, our ability to systematically translate these genomic findings into biological pathways remains limited. Here, we combine rapid loss-of-function mutagenesis of Alzheimer’s risk genes and behavioural pharmacology in zebrafish to predict disrupted processes and candidate therapeutics. FramebyFrame, our expanded package for the analysis of larval behaviours, revealed that decreased night-time sleep was common to F0 knockouts of all four late-onset Alzheimer’s risk genes tested. We developed an online tool, ZOLTAR, which compares any behavioural fingerprint to a library of fingerprints from larvae treated with 3677 compounds. ZOLTAR successfully predicted that sorl1 mutants have disrupted serotonin signalling and identified betamethasone as a drug which normalises the excessive day-time sleep of presenilin-2 knockout larvae with minimal side effects. Predictive behavioural pharmacology offers a general framework to rapidly link disease-associated genes to druggable pathways.

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.