Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro

  1. Giovanni Stefano Ugolini
  2. Andrea Pavesi
  3. Marco Rasponi
  4. Gianfranco Beniamino Fiore
  5. Roger Kamm
  6. Monica Soncini  Is a corresponding author
  1. Politecnico di Milano, Italy
  2. Agency for Science, Technology and Research, Singapore
  3. Singapore-MIT Alliance for Research and Technology, Singapore

Abstract

Upon cardiac pathological conditions such as ischemia, microenvironmental changes instruct a series of cellular responses that trigger cardiac fibroblasts-mediated tissue adaptation and inflammation. A comprehensive model of how early environmental changes may induce cardiac fibroblasts (CF) pathological responses is far from being elucidated, partly due to the lack of approaches involving complex and simultaneous environmental stimulation. Here, we provide a first analysis of human primary CF behavior by means of a multi-stimulus microdevice for combined application of cyclic mechanical strain and controlled oxygen tension. Our findings elucidate differential human CFs responses to different combinations of the above stimuli. Individual stimuli cause proliferative effects (PHH3+ mitotic cells, YAP translocation, PDGF secretion) or increase collagen presence. Interestingly, only the combination of hypoxia and a simulated loss of contractility (2% strain) is able to additionally induce increased CF release of inflammatory and pro-fibrotic cytokines and matrix metalloproteinases.

Article and author information

Author details

  1. Giovanni Stefano Ugolini

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Pavesi

    Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2777-1043
  3. Marco Rasponi

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Gianfranco Beniamino Fiore

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Roger Kamm

    Biosym IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Monica Soncini

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    For correspondence
    monica.soncini@polimi.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8607-7196

Funding

No external funding was received for this work.

Copyright

© 2017, Ugolini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,890
    views
  • 487
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giovanni Stefano Ugolini
  2. Andrea Pavesi
  3. Marco Rasponi
  4. Gianfranco Beniamino Fiore
  5. Roger Kamm
  6. Monica Soncini
(2017)
Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro
eLife 6:e22847.
https://doi.org/10.7554/eLife.22847

Share this article

https://doi.org/10.7554/eLife.22847

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Kavidha Reddy, Guinevere Q Lee ... Thumbi Ndung'u
    Research Article

    Persisting HIV reservoir viruses in resting CD4 T cells and other cellular subsets are a barrier to cure efforts. Early antiretroviral therapy (ART) enables post-treatment viral control in some cases, but mechanisms remain unclear. We hypothesised that ART initiated before peak viremia impacts HIV-1 subtype C reservoirs. We studied 35 women at high risk of infection from Durban, South Africa, identified with hyperacute HIV by twice-weekly HIV-RNA testing. Participants included 11 starting ART at a median of 456 (297–1203) days post-onset of viremia (DPOV) and 24 at 1 (1–3) DPOV. Peripheral blood mononuclear cells (PBMCs) were used to measured total HIV-1 DNA by droplet digital PCR (ddPCR) and sequence viral reservoir genomes by full-length proviral sequencing (FLIP-seq). ART during hyperacute infection blunted peak viremia (p<0.0001), but contemporaneous total HIV-1 DNA did not differ (p=0.104). Over 1 year, a decline of total HIV-1 DNA was observed in early treated persons (p=0.0004), but not late treated. Among 697 viral genome sequences, the proviral genetic landscape differed between untreated, late treated, and early treated groups. Intact genomes after 1 year were higher in untreated (31%) versus late treated (14%) and early treated (0%). Treatment in both late and early infection caused more rapid decay of intact (13% and 51% per month) versus defective (2% and 35%) viral genomes. However, intact genomes persisted 1 year post chronic treatment but were undetectable with early ART. Early ART also reduced phylogenetic diversity of intact genomes and limited cytotoxic T lymphocyte immune escape variants in the reservoir. Overall, ART initiated in hyperacute HIV-1 subtype C infection did not impact reservoir seeding but was associated with rapid intact viral genome decay, reduced genetic complexity, and limited immune escape, which may accelerate reservoir clearance in combination with other interventional strategies.

    1. Cancer Biology
    2. Medicine
    Patrick Brandt, Dawayne Whittington ... Rebekah L Layton
    Research Article

    A doctoral-level internship program was developed at the University of North Carolina at Chapel Hill with the intent to create customizable experiential learning opportunities for biomedical trainees to support career exploration, preparation, and transition into their postgraduate professional roles. We report the outcomes of this program over a 5-year period. During that 5-year period, 123 internships took place at over 70 partner sites, representing at least 20 academic, for-profit, and non-profit career paths in the life sciences. A major goal of the program was to enhance trainees’ skill development and expertise in careers of interest. The benefits of the internship program for interns, host/employer, and supervisor/principal investigator were assessed using a mixed-methods approach, including surveys with closed- and open-ended responses as well as focus group interviews. Balancing stakeholder interests is key to creating a sustainable program with widespread support; hence, the level of support from internship hosts and faculty members were the key metrics analyzed throughout. We hypothesized that once a successful internship program was implemented, faculty culture might shift to be more accepting of internships; indeed, the data quantifying faculty attitudes support this. Furthermore, host motivation and performance expectations of interns were compared with results achieved, and this data revealed both expected and surprising benefits to hosts. Data suggests a myriad of benefits for each stakeholder group, and themes are cataloged and discussed. Program outcomes, evaluation data, policies, resources, and best practices developed through the implementation of this program are shared to provide resources that facilitate the creation of similar internship programs at other institutions. Program development was initially spurred by National Institutes of Health pilot funding, thereafter, successfully transitioning from a grant-supported model, to an institutionally supported funding model to achieve long-term programmatic sustainability.