1. Medicine
Download icon

Human cardiac fibroblasts adaptive responses to controlled combined mechanical strain and oxygen changes in vitro

  1. Giovanni Stefano Ugolini
  2. Andrea Pavesi
  3. Marco Rasponi
  4. Gianfranco Beniamino Fiore
  5. Roger Kamm
  6. Monica Soncini  Is a corresponding author
  1. Politecnico di Milano, Italy
  2. Agency for Science, Technology and Research, Singapore
  3. Singapore-MIT Alliance for Research and Technology, Singapore
Research Article
  • Cited 29
  • Views 2,156
  • Annotations
Cite this article as: eLife 2017;6:e22847 doi: 10.7554/eLife.22847

Abstract

Upon cardiac pathological conditions such as ischemia, microenvironmental changes instruct a series of cellular responses that trigger cardiac fibroblasts-mediated tissue adaptation and inflammation. A comprehensive model of how early environmental changes may induce cardiac fibroblasts (CF) pathological responses is far from being elucidated, partly due to the lack of approaches involving complex and simultaneous environmental stimulation. Here, we provide a first analysis of human primary CF behavior by means of a multi-stimulus microdevice for combined application of cyclic mechanical strain and controlled oxygen tension. Our findings elucidate differential human CFs responses to different combinations of the above stimuli. Individual stimuli cause proliferative effects (PHH3+ mitotic cells, YAP translocation, PDGF secretion) or increase collagen presence. Interestingly, only the combination of hypoxia and a simulated loss of contractility (2% strain) is able to additionally induce increased CF release of inflammatory and pro-fibrotic cytokines and matrix metalloproteinases.

Article and author information

Author details

  1. Giovanni Stefano Ugolini

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrea Pavesi

    Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2777-1043
  3. Marco Rasponi

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Gianfranco Beniamino Fiore

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Roger Kamm

    Biosym IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Monica Soncini

    Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
    For correspondence
    monica.soncini@polimi.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8607-7196

Funding

No external funding was received for this work.

Reviewing Editor

  1. Gordana Vunjak-Novakovic, Columbia University, United States

Publication history

  1. Received: November 8, 2016
  2. Accepted: March 17, 2017
  3. Accepted Manuscript published: March 18, 2017 (version 1)
  4. Accepted Manuscript updated: March 22, 2017 (version 2)
  5. Version of Record published: April 27, 2017 (version 3)

Copyright

© 2017, Ugolini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,156
    Page views
  • 403
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Stem Cells and Regenerative Medicine
    Courtney Tindle et al.
    Tools and Resources Updated

    Background:

    SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear.

    Methods:

    We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19.

    Results:

    Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both.

    Conclusions:

    Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines.

    Funding:

    This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).

    1. Cancer Biology
    2. Medicine
    Maria Ochoa de Olza
    Insight

    Organ-on-chip approaches could help researchers to better predict the toxicity of cancer immunotherapy drugs.