Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch

  1. My-Tra Le  Is a corresponding author
  2. Wojciech K Kasprzak
  3. Taejin Kim
  4. Feng Gao
  5. Megan YL Young
  6. Xuefeng Yuan
  7. Bruce A Shapiro
  8. Joonil Seog
  9. Anne E Simon  Is a corresponding author
  1. University of Maryland, United States
  2. Leidos Biomedical Research, Inc., United States
  3. National Cancer Institute, United States
  4. College of Plant Protection, Shandong Agricultural University, China

Abstract

Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3'UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found that the unusual stability of pseudoknotted element H4a/Ψ3 required five upstream adenylates, and H4a/Ψ3 was necessary for cooperative association of two other hairpins (H5/H4b) in Mg2+. SMD recapitulated the TSS unfolding order in the absence of Mg2+, showed dependence of the resistance to pulling on the 3D orientation and gave structural insights into the measured contour lengths of the TSS structure elements. Adenylate mutations eliminated one-site RdRp binding to the 3'UTR, suggesting that RdRp binding to the adenylates disrupts H4a/Ψ3, leading to loss of H5/H4b interaction and promoting a conformational switch interrupting translation and promoting replication.

Article and author information

Author details

  1. My-Tra Le

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    my.letra@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Wojciech K Kasprzak

    Basic Science Program, Leidos Biomedical Research, Inc., Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Taejin Kim

    RNA Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Feng Gao

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Pak, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Megan YL Young

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xuefeng Yuan

    Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruce A Shapiro

    RNA Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joonil Seog

    Department of Materials Science and Engineering, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anne E Simon

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    simona@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6121-0704

Funding

National Science Foundation (MCB-1411836)

  • My-Tra Le
  • Feng Gao
  • Megan YL Young
  • Xuefeng Yuan
  • Anne E Simon

National Institutes of Health (R21AI117882-01)

  • My-Tra Le
  • Feng Gao
  • Anne E Simon

National Cancer Institute (Intramural)

  • Wojciech K Kasprzak
  • Taejin Kim
  • Bruce A Shapiro

National Institutes of Health (T32GM080201)

  • Megan YL Young

National Institutes of Health (2T32AI051967-06A1)

  • Megan YL Young
  • Anne E Simon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Le et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,085
    views
  • 241
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. My-Tra Le
  2. Wojciech K Kasprzak
  3. Taejin Kim
  4. Feng Gao
  5. Megan YL Young
  6. Xuefeng Yuan
  7. Bruce A Shapiro
  8. Joonil Seog
  9. Anne E Simon
(2017)
Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch
eLife 6:e22883.
https://doi.org/10.7554/eLife.22883

Share this article

https://doi.org/10.7554/eLife.22883

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.