Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch

  1. My-Tra Le  Is a corresponding author
  2. Wojciech K Kasprzak
  3. Taejin Kim
  4. Feng Gao
  5. Megan YL Young
  6. Xuefeng Yuan
  7. Bruce A Shapiro
  8. Joonil Seog
  9. Anne E Simon  Is a corresponding author
  1. University of Maryland, United States
  2. Leidos Biomedical Research, Inc., United States
  3. National Cancer Institute, United States
  4. College of Plant Protection, Shandong Agricultural University, China

Abstract

Turnip crinkle virus contains a T-shaped, ribosome-binding, translation enhancer (TSS) in its 3'UTR that serves as a hub for interactions throughout the region. The viral RNA-dependent RNA polymerase (RdRp) causes the TSS/surrounding region to undergo a conformational shift postulated to inhibit translation. Using optical tweezers (OT) and steered molecular dynamic simulations (SMD), we found that the unusual stability of pseudoknotted element H4a/Ψ3 required five upstream adenylates, and H4a/Ψ3 was necessary for cooperative association of two other hairpins (H5/H4b) in Mg2+. SMD recapitulated the TSS unfolding order in the absence of Mg2+, showed dependence of the resistance to pulling on the 3D orientation and gave structural insights into the measured contour lengths of the TSS structure elements. Adenylate mutations eliminated one-site RdRp binding to the 3'UTR, suggesting that RdRp binding to the adenylates disrupts H4a/Ψ3, leading to loss of H5/H4b interaction and promoting a conformational switch interrupting translation and promoting replication.

Article and author information

Author details

  1. My-Tra Le

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    my.letra@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Wojciech K Kasprzak

    Basic Science Program, Leidos Biomedical Research, Inc., Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Taejin Kim

    RNA Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Feng Gao

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Pak, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Megan YL Young

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xuefeng Yuan

    Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Bruce A Shapiro

    RNA Biology Laboratory, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joonil Seog

    Department of Materials Science and Engineering, University of Maryland, College Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anne E Simon

    Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
    For correspondence
    simona@umd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6121-0704

Funding

National Science Foundation (MCB-1411836)

  • My-Tra Le
  • Feng Gao
  • Megan YL Young
  • Xuefeng Yuan
  • Anne E Simon

National Institutes of Health (R21AI117882-01)

  • My-Tra Le
  • Feng Gao
  • Anne E Simon

National Cancer Institute (Intramural)

  • Wojciech K Kasprzak
  • Taejin Kim
  • Bruce A Shapiro

National Institutes of Health (T32GM080201)

  • Megan YL Young

National Institutes of Health (2T32AI051967-06A1)

  • Megan YL Young
  • Anne E Simon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: November 3, 2016
  2. Accepted: February 7, 2017
  3. Accepted Manuscript published: February 10, 2017 (version 1)
  4. Accepted Manuscript updated: February 13, 2017 (version 2)
  5. Version of Record published: March 3, 2017 (version 3)

Copyright

© 2017, Le et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,064
    views
  • 240
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. My-Tra Le
  2. Wojciech K Kasprzak
  3. Taejin Kim
  4. Feng Gao
  5. Megan YL Young
  6. Xuefeng Yuan
  7. Bruce A Shapiro
  8. Joonil Seog
  9. Anne E Simon
(2017)
Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch
eLife 6:e22883.
https://doi.org/10.7554/eLife.22883

Share this article

https://doi.org/10.7554/eLife.22883

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.