Probing protein flexibility reveals a mechanism for selective promiscuity

  1. Nicolas A Pabon
  2. Carlos J Camacho  Is a corresponding author
  1. University of Pittsburgh, United States

Abstract

Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anti-cancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets.

Article and author information

Author details

  1. Nicolas A Pabon

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2591-4349
  2. Carlos J Camacho

    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    ccamacho@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1741-8529

Funding

National Science Foundation (Graduate Research Fellowship)

  • Nicolas A Pabon

National Institutes of Health (NIHGMS General Medicine)

  • Carlos J Camacho

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nir Ben-Tal, Tel Aviv University, Israel

Publication history

  1. Received: November 3, 2016
  2. Accepted: April 20, 2017
  3. Accepted Manuscript published: April 22, 2017 (version 1)
  4. Version of Record published: May 26, 2017 (version 2)

Copyright

© 2017, Pabon & Camacho

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,011
    Page views
  • 429
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas A Pabon
  2. Carlos J Camacho
(2017)
Probing protein flexibility reveals a mechanism for selective promiscuity
eLife 6:e22889.
https://doi.org/10.7554/eLife.22889

Further reading

    1. Physics of Living Systems
    Nicola Rigolli, Gautam Reddy ... Massimo Vergassola
    Research Article Updated

    Foraging mammals exhibit a familiar yet poorly characterized phenomenon, ‘alternation’, a pause to sniff in the air preceded by the animal rearing on its hind legs or raising its head. Rodents spontaneously alternate in the presence of airflow, suggesting that alternation serves an important role during plume-tracking. To test this hypothesis, we combine fully resolved simulations of turbulent odor transport and Bellman optimization methods for decision-making under partial observability. We show that an agent trained to minimize search time in a realistic odor plume exhibits extensive alternation together with the characteristic cast-and-surge behavior observed in insects. Alternation is linked with casting and occurs more frequently far downwind of the source, where the likelihood of detecting airborne cues is higher relative to ground cues. Casting and alternation emerge as complementary tools for effective exploration with sparse cues. A model based on marginal value theory captures the interplay between casting, surging, and alternation.

    1. Physics of Living Systems
    Samuel Brudner, Thierry Emonet
    Insight

    Computational model reveals why pausing to sniff the air helps animals track a scent when they are far away from the source.