Position- and Hippo signaling-dependent plasticityduring lineage segregation in the early mouse embryo

  1. Eszter Posfai
  2. Sophie Petropoulos
  3. Flavia RO de Barros
  4. John Paul Schell
  5. Igor Jurisica
  6. Rickard Sandberg
  7. Fredrik Lanner
  8. Janet Rossant  Is a corresponding author
  1. Hospital for Sick Children, Canada
  2. Karolinska Institutet, Sweden
  3. University Health Network, Canada

Abstract

The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Eszter Posfai

    Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie Petropoulos

    Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Flavia RO de Barros

    Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. John Paul Schell

    Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Igor Jurisica

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Rickard Sandberg

    Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Fredrik Lanner

    Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Janet Rossant

    Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    For correspondence
    janet.rossant@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3731-5466

Funding

Canadian Institutes of Health Research (FDN-143334)

  • Janet Rossant

Ragnar Söderbergs stiftelse (M67/13)

  • Fredrik Lanner

Swedish Foundation for Strategic Research (ICA12-0001)

  • Fredrik Lanner

Knut och Alice Wallenbergs Stiftelse (2015.0096)

  • Fredrik Lanner

Swedish Research Council (2013-2570)

  • Fredrik Lanner

Restracomp fellowship (post-doctoral fellowship)

  • Eszter Posfai

Mats Sundin Fellowship (post-doctoral fellowship)

  • Sophie Petropoulos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Ethics

Animal experimentation: All animal work was carried out following Canadian Council on Animal Care Guidelines for Use of Animals in Research and Laboratory Animal Care under protocols (protocol number: 20-0026H) approved by The Centre for Phenogenomics Animal Care Committee.

Version history

  1. Received: November 2, 2016
  2. Accepted: February 13, 2017
  3. Accepted Manuscript published: February 22, 2017 (version 1)
  4. Version of Record published: March 28, 2017 (version 2)
  5. Version of Record updated: October 25, 2017 (version 3)

Copyright

© 2017, Posfai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,448
    views
  • 1,471
    downloads
  • 115
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eszter Posfai
  2. Sophie Petropoulos
  3. Flavia RO de Barros
  4. John Paul Schell
  5. Igor Jurisica
  6. Rickard Sandberg
  7. Fredrik Lanner
  8. Janet Rossant
(2017)
Position- and Hippo signaling-dependent plasticityduring lineage segregation in the early mouse embryo
eLife 6:e22906.
https://doi.org/10.7554/eLife.22906

Share this article

https://doi.org/10.7554/eLife.22906

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.