Position- and Hippo signaling-dependent plasticityduring lineage segregation in the early mouse embryo

  1. Eszter Posfai
  2. Sophie Petropoulos
  3. Flavia RO de Barros
  4. John Paul Schell
  5. Igor Jurisica
  6. Rickard Sandberg
  7. Fredrik Lanner
  8. Janet Rossant  Is a corresponding author
  1. Hospital for Sick Children, Canada
  2. Karolinska Institutet, Sweden
  3. University Health Network, Canada

Abstract

The segregation of the trophectoderm (TE) from the inner cell mass (ICM) in the mouse blastocyst is determined by position-dependent Hippo signaling. However, the window of responsiveness to Hippo signaling, the exact timing of lineage commitment and the overall relationship between cell commitment and global gene expression changes are still unclear. Single-cell RNA sequencing during lineage segregation revealed that the TE transcriptional profile stabilizes earlier than the ICM and prior to blastocyst formation. Using quantitative Cdx2-eGFP expression as a readout of Hippo signaling activity, we assessed the experimental potential of individual blastomeres based on their level of Cdx2-eGFP expression and correlated potential with gene expression dynamics. We find that TE specification and commitment coincide and occur at the time of transcriptional stabilization, whereas ICM cells still retain the ability to regenerate TE up to the early blastocyst stage. Plasticity of both lineages is coincident with their window of sensitivity to Hippo signaling.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Eszter Posfai

    Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie Petropoulos

    Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Flavia RO de Barros

    Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. John Paul Schell

    Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Igor Jurisica

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Rickard Sandberg

    Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Fredrik Lanner

    Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Janet Rossant

    Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
    For correspondence
    janet.rossant@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3731-5466

Funding

Canadian Institutes of Health Research (FDN-143334)

  • Janet Rossant

Ragnar Söderbergs stiftelse (M67/13)

  • Fredrik Lanner

Swedish Foundation for Strategic Research (ICA12-0001)

  • Fredrik Lanner

Knut och Alice Wallenbergs Stiftelse (2015.0096)

  • Fredrik Lanner

Swedish Research Council (2013-2570)

  • Fredrik Lanner

Restracomp fellowship (post-doctoral fellowship)

  • Eszter Posfai

Mats Sundin Fellowship (post-doctoral fellowship)

  • Sophie Petropoulos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was carried out following Canadian Council on Animal Care Guidelines for Use of Animals in Research and Laboratory Animal Care under protocols (protocol number: 20-0026H) approved by The Centre for Phenogenomics Animal Care Committee.

Copyright

© 2017, Posfai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,049
    views
  • 1,557
    downloads
  • 146
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eszter Posfai
  2. Sophie Petropoulos
  3. Flavia RO de Barros
  4. John Paul Schell
  5. Igor Jurisica
  6. Rickard Sandberg
  7. Fredrik Lanner
  8. Janet Rossant
(2017)
Position- and Hippo signaling-dependent plasticityduring lineage segregation in the early mouse embryo
eLife 6:e22906.
https://doi.org/10.7554/eLife.22906

Share this article

https://doi.org/10.7554/eLife.22906

Further reading

    1. Developmental Biology
    Satoshi Yamashita, Shuji Ishihara, François Graner
    Research Article

    Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.