Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline

  1. Stephanie L Leal  Is a corresponding author
  2. Susan M Landau
  3. Rachel K Bell
  4. William J Jagust  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

The amyloid hypothesis suggests that beta-amyloid (Aβ) deposition leads to alterations in neural function and ultimately to cognitive decline in Alzheimer's disease. However, factors that underlie Aβ deposition are incompletely understood. One proposed model suggests that synaptic activity leads to increased Aβ deposition. More specifically, hyperactivity in the hippocampus may be detrimental and could be one factor that drives Aβ deposition. To test this model, we examined the relationship between hippocampal activity during a memory task using fMRI and subsequent longitudinal change in Aβ using PIB-PET imaging in cognitively normal older adults. We found that greater hippocampal activation at baseline was associated with increased Aβ accumulation. Furthermore, increasing Aβ accumulation mediated the influence of hippocampal activation on declining memory performance, demonstrating a crucial role of Aβ in linking hippocampal activation and memory. These findings support a model linking increased hippocampal activation to subsequent Aβ deposition and cognitive decline.

Article and author information

Author details

  1. Stephanie L Leal

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    stephanieleal@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8082-8291
  2. Susan M Landau

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachel K Bell

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. William J Jagust

    Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    jagust@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Aging (AG054116)

  • Stephanie L Leal

National Institute on Aging (AG034570)

  • William J Jagust

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alison Goate, Icahn School of Medicine at Mount Sinai, United States

Ethics

Human subjects: Informed consent was obtained from all research participants and approved by the Institutional Review Boards of Lawrence Berkeley National Labs and UC Berkeley.

Version history

  1. Received: November 5, 2016
  2. Accepted: February 6, 2017
  3. Accepted Manuscript published: February 8, 2017 (version 1)
  4. Version of Record published: February 24, 2017 (version 2)

Copyright

© 2017, Leal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,430
    views
  • 651
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stephanie L Leal
  2. Susan M Landau
  3. Rachel K Bell
  4. William J Jagust
(2017)
Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline
eLife 6:e22978.
https://doi.org/10.7554/eLife.22978

Share this article

https://doi.org/10.7554/eLife.22978

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.