Bacterial flagella grow through an injection-diffusion mechanism

  1. Thibaud T Renault
  2. Anthony O Abraham
  3. Tobias Bergmiller
  4. Guillaume Paradis
  5. Simon Rainville
  6. Emmanuelle Charpentier
  7. Călin C Guet
  8. Yuhai Tu
  9. Keiichi Namba
  10. James P Keener  Is a corresponding author
  11. Tohru Minamino
  12. Marc Erhardt  Is a corresponding author
  1. Helmholtz Centre for Infection Research, Germany
  2. Osaka University, Japan
  3. Institute of Science and Technology Austria, Austria
  4. Laval University, Canada
  5. Max Planck Institute for Infection Biology, Germany
  6. IBM Thomas J. Watson Research Center, United States
  7. University of Utah, United States

Abstract

The bacterial flagellum is a self-assembling nanomachine. The external flagellar filament, several times longer than a bacterial cell body, is made of a few tens of thousands subunits of a single protein: flagellin. A fundamental problem concerns the molecular mechanism of how the flagellum grows outside the cell, where no discernible energy source is available. Here, we monitored the dynamic assembly of individual flagella using in situ labelling and real-time immunostaining of elongating flagellar filaments. We report that the rate of flagellum growth, initially ∼1,700 amino acids per second, decreases with length and that the previously proposed chain mechanism does not contribute to the filament elongation dynamics. Inhibition of the proton motive force-dependent export apparatus revealed a major contribution of substrate injection in driving filament elongation. The combination of experimental and mathematical evidence demonstrates that a simple, injection-diffusion mechanism controls bacterial flagella growth outside the cell.

Article and author information

Author details

  1. Thibaud T Renault

    Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Anthony O Abraham

    Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8710-1351
  3. Tobias Bergmiller

    Institute of Science and Technology Austria, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Guillaume Paradis

    Department of Physics, Engineering Physics and Optics, Laval University, Quebec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon Rainville

    Department of Physics, Engineering Physics and Optics, Laval University, Quebec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Emmanuelle Charpentier

    Max Planck Institute for Infection Biology, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Călin C Guet

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6220-2052
  8. Yuhai Tu

    IBM Thomas J. Watson Research Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Keiichi Namba

    Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. James P Keener

    Department of Mathematics, University of Utah, Salt Lake City, United States
    For correspondence
    keener@math.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Tohru Minamino

    Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Marc Erhardt

    Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
    For correspondence
    marc.erhardt@helmholtz-hzi.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6292-619X

Funding

Helmholtz-Gemeinschaft (VH-NG-932)

  • Marc Erhardt

Japan Society for the Promotion of Science (15H01640)

  • Tohru Minamino

Max-Planck-Gesellschaft

  • Emmanuelle Charpentier

National Institutes of Health (R01GM081747)

  • Yuhai Tu

European Commission (334030)

  • Marc Erhardt

Japan Society for the Promotion of Science (25000013)

  • Keiichi Namba

Natural Sciences and Engineering Research Council of Canada

  • Simon Rainville

Alexander von Humboldt-Stiftung

  • Thibaud T Renault

Japan Society for the Promotion of Science (26293097)

  • Tohru Minamino

Japan Society for the Promotion of Science (24117004)

  • Tohru Minamino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Renault et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,100
    views
  • 1,116
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thibaud T Renault
  2. Anthony O Abraham
  3. Tobias Bergmiller
  4. Guillaume Paradis
  5. Simon Rainville
  6. Emmanuelle Charpentier
  7. Călin C Guet
  8. Yuhai Tu
  9. Keiichi Namba
  10. James P Keener
  11. Tohru Minamino
  12. Marc Erhardt
(2017)
Bacterial flagella grow through an injection-diffusion mechanism
eLife 6:e23136.
https://doi.org/10.7554/eLife.23136

Share this article

https://doi.org/10.7554/eLife.23136

Further reading

    1. Structural Biology and Molecular Biophysics
    Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary
    Research Article

    Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2’s strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.

    1. Structural Biology and Molecular Biophysics
    Dipti Ranjan Lenka, Shakti Virendra Dahe ... Atul Kumar
    Research Article

    Loss-of-function Parkin mutations lead to early-onset of Parkinson’s disease. Parkin is an auto-inhibited ubiquitin E3 ligase activated by dual phosphorylation of its ubiquitin-like (Ubl) domain and ubiquitin by the PINK1 kinase. Herein, we demonstrate a competitive binding of the phospho-Ubl and RING2 domains towards the RING0 domain, which regulates Parkin activity. We show that phosphorylated Parkin can complex with native Parkin, leading to the activation of autoinhibited native Parkin in trans. Furthermore, we show that the activator element (ACT) of Parkin is required to maintain the enzyme kinetics, and the removal of ACT slows the enzyme catalysis. We also demonstrate that ACT can activate Parkin in trans but less efficiently than when present in the cis molecule. Furthermore, the crystal structure reveals a donor ubiquitin binding pocket in the linker connecting REP and RING2, which plays a crucial role in Parkin activity.