Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks

  1. Jenna R Christensen
  2. Glen M Hocky
  3. Kaitlin E Homa
  4. Alisha N Morganthaler
  5. Sarah E Hitchcock-DeGregori
  6. Gregory A Voth
  7. David R Kovar  Is a corresponding author
  1. The University of Chicago, United States
  2. Rutgers University, United States

Abstract

The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks.

Article and author information

Author details

  1. Jenna R Christensen

    Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Glen M Hocky

    Department of Chemistry, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5637-0698
  3. Kaitlin E Homa

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alisha N Morganthaler

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sarah E Hitchcock-DeGregori

    Department of Pathology and Laboratory Medicine, Rutgers University, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gregory A Voth

    Department of Chemistry, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David R Kovar

    Molecular Genetics and Cell Biology, Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
    For correspondence
    drkovar@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5747-0949

Funding

National Institutes of Health (GM079265)

  • David R Kovar

American Cancer Society (RSG-11-126-01-CSM)

  • David R Kovar

National Science Foundation (DGE-1144082)

  • Jenna R Christensen

National Institutes of Health (T32 GM0071832)

  • Jenna R Christensen
  • Kaitlin E Homa

National Institutes of Health (F32 GM113415-01)

  • Glen M Hocky

National Institutes of Health (GM093965)

  • Sarah E Hitchcock-DeGregori

National Science Foundation (DMR-1420709)

  • Gregory A Voth
  • David R Kovar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mohan K Balasubramanian, University of Warwick, United Kingdom

Version history

  1. Received: November 10, 2016
  2. Accepted: March 9, 2017
  3. Accepted Manuscript published: March 10, 2017 (version 1)
  4. Version of Record published: April 25, 2017 (version 2)

Copyright

© 2017, Christensen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,770
    views
  • 783
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenna R Christensen
  2. Glen M Hocky
  3. Kaitlin E Homa
  4. Alisha N Morganthaler
  5. Sarah E Hitchcock-DeGregori
  6. Gregory A Voth
  7. David R Kovar
(2017)
Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks
eLife 6:e23152.
https://doi.org/10.7554/eLife.23152

Share this article

https://doi.org/10.7554/eLife.23152

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.