The role of PDF neurons in setting preferred temperature before dawn in Drosophila

  1. Xin Tang
  2. Sanne Roessingh
  3. Sean E Hayley
  4. Michelle L Chu
  5. Nobuaki K Tanaka
  6. Werner Wolfgang
  7. Seongho Song
  8. Ralf Stanewsky
  9. Fumika N Hamada  Is a corresponding author
  1. Cincinnati Children's Hospital Medical Center, United States
  2. University College London, United Kingdom
  3. Hokkaido University, Japan
  4. University of London, United Kingdom
  5. University of Cincinnati, United States
  6. Westfälische Wilhelms University, Germany

Abstract

Animals have sophisticated homeostatic controls. While mammalian body temperature fluctuates throughout the day, small ectotherms, such as Drosophila, achieve a body temperature rhythm (BTR) through their preference of environmental temperature. Here, we demonstrate that pigment dispersing factor (PDF) neurons play an important role in setting preferred temperature before dawn. We show that small lateral ventral neurons (sLNvs), a subset of PDF neurons, activate the dorsal neurons 2 (DN2s), the main circadian clock cells that regulate temperature preference rhythm (TPR). The number of temporal contacts between sLNvs and DN2s peak before dawn. Our data suggest that the thermosensory Anterior Cells (ACs) likely contact sLNvs via serotonin signaling. Together, the ACs-sLNs-DN2s neural circuit regulates the proper setting of temperature preference before dawn. Given that sLNvs are important for sleep and that BTR and sleep have a close temporal relationship, our data highlight a possible neuronal interaction between body temperature and sleep regulation.

Article and author information

Author details

  1. Xin Tang

    Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sanne Roessingh

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sean E Hayley

    Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle L Chu

    Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nobuaki K Tanaka

    Creative Research Institution, Hokkaido University, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Werner Wolfgang

    School of Biological and Chemical Sciences, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Seongho Song

    Department of Mathematical Sciences, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralf Stanewsky

    Institute for Neuro and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Fumika N Hamada

    Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
    For correspondence
    fumika.hamada@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5365-0504

Funding

National Institutes of Health (R01 grant GM107582)

  • Fumika N Hamada

March of Dimes Foundation (Basil O'Connor Starter Scholar Research Award)

  • Fumika N Hamada

Japan Science and Technology Agency (PRESTO)

  • Fumika N Hamada

Biotechnology and Biological Sciences Research Council

  • Ralf Stanewsky

Seventh Framework Programme

  • Ralf Stanewsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,410
    views
  • 653
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Tang
  2. Sanne Roessingh
  3. Sean E Hayley
  4. Michelle L Chu
  5. Nobuaki K Tanaka
  6. Werner Wolfgang
  7. Seongho Song
  8. Ralf Stanewsky
  9. Fumika N Hamada
(2017)
The role of PDF neurons in setting preferred temperature before dawn in Drosophila
eLife 6:e23206.
https://doi.org/10.7554/eLife.23206

Share this article

https://doi.org/10.7554/eLife.23206

Further reading

    1. Neuroscience
    HaDi MaBouDi, Jasmin Richter ... Lars Chittka
    Research Article

    Active vision, the sensory-motor process through which animals dynamically adjust visual input to sample and prioritise relevant information via photoreceptors, eyes, head, and body movements, is well-documented across species. In small-brained animals like insects, where parallel processing may be limited, active vision for sequential acquisition of visual features might be even more important. We investigated how bumblebees use active vision to distinguish between two visual patterns: a multiplication sign and its 45°-rotated variant, a plus sign. By allowing bees to freely inspect patterns, we analysed their flight paths, inspection times, velocities and regions of focus through high-speed videography. We observed that bees tended to inspect only a small region of each pattern, with a preference for lower and left-side sections, before accurately accepting target or rejecting distractor patterns. The specific pattern areas scanned differed between the plus and multiplication signs, yet flight behaviour remained consistent and specific to each pattern, regardless of whether the pattern was rewarding or punishing. Transfer tests showed that bees could generalise their pattern recognition to partial cues, maintaining scanning strategies and selective attention to learned regions. These findings highlight active vision as a crucial aspect of bumblebees' visual processing, where selective scanning behaviours during flight enhance discrimination accuracy and enable efficient environmental analysis and visual encoding.

    1. Neuroscience
    Zhiping Cao, Wing-Ho Yung, Ya Ke
    Research Article

    Mental and behavioral disorders are associated with extended period of hot weather as found in heatwaves, but the underlying neural circuit mechanism remains poorly known. The posterior paraventricular thalamus (pPVT) is a hub for emotional processing and receives inputs from the hypothalamic preoptic area (POA), the well-recognized thermoregulation center. The present study was designed to explore whether chronic heat exposure leads to aberrant activities in POA recipient pPVT neurons and subsequent changes in emotional states. By devising an air heating paradigm mimicking the condition of heatwaves and utilizing emotion-related behavioral tests, viral tract tracing, in vivo calcium recordings, optogenetic manipulations, and electrophysiological recordings, we found that chronic heat exposure for 3 weeks led to negative emotional valence and hyperarousal states in mice. The pPVT neurons receive monosynaptic excitatory and inhibitory innervations from the POA. These neurons exhibited a persistent increase in neural activity following chronic heat exposure, which was essential for chronic heat-induced emotional changes. Notably, these neurons were also prone to display stronger neuronal activities associated with anxiety responses to stressful situations. Furthermore, we observed saturated neuroplasticity in the POA-pPVT excitatory pathway after chronic heat exposure that occluded further potentiation. Taken together, long-term aberration in the POA to pPVT pathway offers a neurobiological mechanism of emotional and behavioral changes seen in extended periods of hot weather like heatwaves.