Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator

  1. Isabel Nocedal  Is a corresponding author
  2. Eugenio Mancera
  3. Alexander D Johnson  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Cinvestav Unidad Irapuato, Mexico
  3. University of California, San Francisco, United States

Abstract

The rewiring of gene regulatory networks can generate phenotypic novelty. It remains an open question, however, how the large number of connections needed to form a novel network arise over evolutionary time. Here we address this question using the network controlled by the fungal transcription regulator Ndt80. This conserved protein has undergone a dramatic switch in function—from an ancestral role regulating sporulation to a derived role regulating biofilm formation. This switch in function corresponded to a large-scale rewiring of the genes regulated by Ndt80. However, we demonstrate that the Ndt80-target gene connections were undergoing extensive rewiring prior to the switch in Ndt80’s regulatory function. We propose that extensive drift in the Ndt80 regulon allowed for the exploration of alternative network structures without a loss of ancestral function, thereby facilitating the formation of a network with a new function.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Isabel Nocedal

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    inocedal@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4706-1113
  2. Eugenio Mancera

    Departamento de Ingeniería Genética, Cinvestav Unidad Irapuato, Irapuaro, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander D Johnson

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    For correspondence
    ajohnson@cgl.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01 GM037049)

  • Isabel Nocedal
  • Eugenio Mancera
  • Alexander D Johnson

Human Frontier Science Program

  • Eugenio Mancera

UC-MEXUS

  • Eugenio Mancera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Nocedal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,904
    views
  • 586
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Isabel Nocedal
  2. Eugenio Mancera
  3. Alexander D Johnson
(2017)
Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator
eLife 6:e23250.
https://doi.org/10.7554/eLife.23250

Share this article

https://doi.org/10.7554/eLife.23250

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Wei Q Deng, Nathan Cawte ... Sonia S Anand
    Research Article

    Background:

    Maternal smoking has been linked to adverse health outcomes in newborns but the extent to which it impacts newborn health has not been quantified through an aggregated cord blood DNA methylation (DNAm) score. Here, we examine the feasibility of using cord blood DNAm scores leveraging large external studies as discovery samples to capture the epigenetic signature of maternal smoking and its influence on newborns in White European and South Asian populations.

    Methods:

    We first examined the association between individual CpGs and cigarette smoking during pregnancy, and smoking exposure in two White European birth cohorts (n=744). Leveraging established CpGs for maternal smoking, we constructed a cord blood epigenetic score of maternal smoking that was validated in one of the European-origin cohorts (n=347). This score was then tested for association with smoking status, secondary smoking exposure during pregnancy, and health outcomes in offspring measured after birth in an independent White European (n=397) and a South Asian birth cohort (n=504).

    Results:

    Several previously reported genes for maternal smoking were supported, with the strongest and most consistent association signal from the GFI1 gene (6 CpGs with p<5 × 10-5). The epigenetic maternal smoking score was strongly associated with smoking status during pregnancy (OR = 1.09 [1.07, 1.10], p=5.5 × 10-33) and more hours of self-reported smoking exposure per week (1.93 [1.27, 2.58], p=7.8 × 10-9) in White Europeans. However, it was not associated with self-reported exposure (p>0.05) among South Asians, likely due to a lack of smoking in this group. The same score was consistently associated with a smaller birth size (–0.37±0.12 cm, p=0.0023) in the South Asian cohort and a lower birth weight (–0.043±0.013 kg, p=0.0011) in the combined cohorts.

    Conclusions:

    This cord blood epigenetic score can help identify babies exposed to maternal smoking and assess its long-term impact on growth. Notably, these results indicate a consistent association between the DNAm signature of maternal smoking and a small body size and low birth weight in newborns, in both White European mothers who exhibited some amount of smoking and in South Asian mothers who themselves were not active smokers.

    Funding:

    This study was funded by the Canadian Institutes of Health Research Metabolomics Team Grant: MWG-146332.

    1. Cancer Biology
    2. Genetics and Genomics
    Li Min, Fanqin Bu ... Shutian Zhang
    Research Article

    It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.