Node of Ranvier length as a potential regulator of myelinated axon conduction speed

  1. I Lorena Arancibia-Carcamo
  2. Marc C Ford
  3. Lee Cossell
  4. Kinji Ishida
  5. Koujiro Tohyama  Is a corresponding author
  6. David Attwell  Is a corresponding author
  1. University College London, United Kingdom
  2. Iwate Medical University, Japan

Abstract

Myelination speeds conduction of the nerve impulse, enhancing cognitive power. Changes of white matter structure contribute to learning, and are often assumed to reflect an altered number of myelin wraps. We now show that, in rat optic nerve and cerebral cortical axons, the node of Ranvier length varies over a 4.4-fold and 8.7-fold range respectively and that variation of the node length is much less along axons than between axons. Modelling predicts that these node length differences will alter conduction speed by ~20%, similar to the changes produced by altering the number of myelin wraps or the internode length. For a given change of conduction speed, the membrane area change needed at the node is >270-fold less than that needed in the myelin sheath. Thus, axon-specific adjustment of node of Ranvier length is potentially an energy-efficient and rapid mechanism for tuning the arrival time of information in the CNS.<br /><strong> </strong>

Article and author information

Author details

  1. I Lorena Arancibia-Carcamo

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Marc C Ford

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0472-2652
  3. Lee Cossell

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Kinji Ishida

    The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Koujiro Tohyama

    The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Japan
    For correspondence
    tohyama@coral.plala.or.jp
    Competing interests
    The authors declare that no competing interests exist.
  6. David Attwell

    Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    d.attwell@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3618-0843

Funding

Wellcome (099222/Z/12/Z)

  • I Lorena Arancibia-Carcamo
  • Lee Cossell
  • David Attwell

European Commission (623714 AxonGliaPlasticity)

  • Marc C Ford

Japan Society for the Promotion of Science London (24650181)

  • Kinji Ishida
  • Koujiro Tohyama

Japan Society for the Promotion of Science London (25245069)

  • Kinji Ishida
  • Koujiro Tohyama

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This work was performed in accordance with the United Kingdom Animals (Scientific Procedures) Act (1986) and subsequent amendments, under UK Home Office licence (PPL 70/7299) and the electrom microscopy part of the work was approved by the Ethical Committee of Iwate Medical University.

Copyright

© 2017, Arancibia-Carcamo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,839
    views
  • 1,391
    downloads
  • 232
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. I Lorena Arancibia-Carcamo
  2. Marc C Ford
  3. Lee Cossell
  4. Kinji Ishida
  5. Koujiro Tohyama
  6. David Attwell
(2017)
Node of Ranvier length as a potential regulator of myelinated axon conduction speed
eLife 6:e23329.
https://doi.org/10.7554/eLife.23329

Share this article

https://doi.org/10.7554/eLife.23329

Further reading

    1. Neuroscience
    Lian Hollander-Cohen, Omer Cohen ... Berta Levavi-Sivan
    Research Article

    Life histories of oviparous species dictate high metabolic investment in the process of gonadal development leading to ovulation. In vertebrates, these two distinct processes are controlled by the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH), respectively. While it was suggested that a common secretagogue, gonadotropin-releasing hormone (GnRH), oversees both functions, the generation of loss-of-function fish challenged this view. Here, we reveal that the satiety hormone cholecystokinin (CCK) is the primary regulator of this axis in zebrafish. We found that FSH cells express a CCK receptor, and our findings demonstrate that mutating this receptor results in a severe hindrance to ovarian development. Additionally, it causes a complete shutdown of both gonadotropins secretion. Using in-vivo and ex-vivo calcium imaging of gonadotrophs, we show that GnRH predominantly activates LH cells, whereas FSH cells respond to CCK stimulation, designating CCK as the bona fide FSH secretagogue. These findings indicate that the control of gametogenesis in fish was placed under different neural circuits, that are gated by CCK.

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.