Node of Ranvier length as a potential regulator of myelinated axon conduction speed

  1. I Lorena Arancibia-Carcamo
  2. Marc C Ford
  3. Lee Cossell
  4. Kinji Ishida
  5. Koujiro Tohyama  Is a corresponding author
  6. David Attwell  Is a corresponding author
  1. University College London, United Kingdom
  2. Iwate Medical University, Japan

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. I Lorena Arancibia-Carcamo
  2. Marc C Ford
  3. Lee Cossell
  4. Kinji Ishida
  5. Koujiro Tohyama
  6. David Attwell
(2017)
Node of Ranvier length as a potential regulator of myelinated axon conduction speed
eLife 6:e23329.
https://doi.org/10.7554/eLife.23329

Share this article

https://doi.org/10.7554/eLife.23329