Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin

  1. Rima S Chakrabarti
  2. Sally A Ingham
  3. Julia Kozlitina
  4. Austin Gay
  5. Jonathan C Cohen
  6. Arun Radhakrishnan
  7. Helen H Hobbs  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States
  2. University of Texas Southwestern Medical Center, United States

Abstract

Cholesterol partitions into accessible and sequestered pools in cell membranes. Here we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals but varied >10-fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessible. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans.

Article and author information

Author details

  1. Rima S Chakrabarti

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Sally A Ingham

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Julia Kozlitina

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Austin Gay

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Jonathan C Cohen

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Arun Radhakrishnan

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7266-7336
  7. Helen H Hobbs

    Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    helen.hobbs@utsouthwestern.edu
    Competing interests
    Helen H Hobbs, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8700-9897

Funding

Howard Hughes Medical Institute

  • Rima S Chakrabarti
  • Sally A Ingham
  • Helen H Hobbs

National Institutes of Health (PO1 HL20948)

  • Austin Gay
  • Jonathan C Cohen
  • Arun Radhakrishnan
  • Helen H Hobbs

Welch Foundation (I-1793)

  • Arun Radhakrishnan

American Heart Association (12SDG12040267)

  • Arun Radhakrishnan

National Institutes of Health (5T32-GM008203)

  • Austin Gay

National Institutes of Health (UL1TR001105)

  • Julia Kozlitina
  • Helen H Hobbs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen G Young, University of California, Los Angeles, United States

Ethics

Human subjects: All study protocols were approved by the Institutional Review Board (IRB) of the University of Texas Southwestern Medical Center, and all subjects provided written informed consent. Each participant completed a detailed staff-administered survey, including questions about socioeconomic status, medical history and medication use. Ancestry was self-reported.

Version history

  1. Received: November 16, 2016
  2. Accepted: January 28, 2017
  3. Accepted Manuscript published: February 7, 2017 (version 1)
  4. Accepted Manuscript updated: February 8, 2017 (version 2)
  5. Version of Record published: February 23, 2017 (version 3)

Copyright

© 2017, Chakrabarti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,698
    views
  • 502
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rima S Chakrabarti
  2. Sally A Ingham
  3. Julia Kozlitina
  4. Austin Gay
  5. Jonathan C Cohen
  6. Arun Radhakrishnan
  7. Helen H Hobbs
(2017)
Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin
eLife 6:e23355.
https://doi.org/10.7554/eLife.23355

Share this article

https://doi.org/10.7554/eLife.23355

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.