A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination
Abstract
Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3′-phosphoadenosine 5′- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.
Data availability
-
Gene expression profiling of retrograde PAP-signaling and ABA-signaling mutants in response to ABA treatmentPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE84997).
-
Transcriptome analysis of Arabidopsis thaliana G protein subunit mutants in response to abscisic acid (ABA)Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE19520).
Article and author information
Author details
Funding
Australian Research Council (CE140100008)
- Wannarat Pornsiriwong
- Gonzalo M Estavillo
- Kai Xun Chan
- Estee E Tee
- Diep Ganguly
- Peter A Crisp
- Su Yin Phua
- Jiaen Qiu
- Nazia Nisar
- Arun Kumar Yadav
- Christopher I Cazzonelli
- Philippa B Wilson
- Matthew Gilliham
National Institutes of Health (GM060396)
- Jiyoung Park
Human Frontier Science Program
- Jiyoung Park
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experimentation involving Xenopus oocytes were performed in strict accordance to the University of Adelaide ethics committee guidelines. All Xenopus experiments received ethical approval (Animal Ethics Application # S-2014-192, University of Adelaide).
Reviewing Editor
- Dominique C Bergmann, Stanford University/HHMI, United States
Publication history
- Received: November 16, 2016
- Accepted: March 16, 2017
- Accepted Manuscript published: March 21, 2017 (version 1)
- Version of Record published: April 26, 2017 (version 2)
- Version of Record updated: May 5, 2017 (version 3)
Copyright
© 2017, Pornsiriwong et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,831
- Page views
-
- 1,183
- Downloads
-
- 92
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Plant Biology
As a ubiquitous picophytoplankton in the ocean and an early-branching green alga, Ostreococcus tauri is a model prasinophyte species for studying the functional evolution of the light-harvesting systems in photosynthesis. Here, we report the structure and function of the O. tauri photosystem I (PSI) supercomplex in low light conditions, where it expands its photon-absorbing capacity by assembling with the light-harvesting complexes I (LHCI) and a prasinophyte-specific light-harvesting complex (Lhcp). The architecture of the supercomplex exhibits hybrid features of the plant-type and the green algal-type PSI supercomplexes, consisting of a PSI core, a Lhca1-Lhca4-Lhca2-Lhca3 belt attached on one side and a Lhca5-Lhca6 heterodimer associated on the other side between PsaG and PsaH. Interestingly, nine Lhcp subunits, including one Lhcp1 monomer with a phosphorylated amino-terminal threonine and eight Lhcp2 monomers, oligomerize into three trimers and associate with PSI on the third side between Lhca6 and PsaK. The Lhcp1 phosphorylation and the light-harvesting capacity of PSI were subjected to reversible photoacclimation, suggesting that the formation of OtPSI-LHCI-Lhcp supercomplex is likely due to a phosphorylation-dependent mechanism induced by changes in light intensity. Notably, this supercomplex did not exhibit far-red peaks in the 77 K fluorescence spectra, which is possibly due to the weak coupling of the chlorophyll a603-a609 pair in OtLhca1-4.
-
- Chromosomes and Gene Expression
- Plant Biology
A well-established model for how plants start the process of flowering in periods of cold weather may need revisiting.