A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination

  1. Wannarat Pornsiriwong
  2. Gonzalo M Estavillo
  3. Kai Xun Chan
  4. Estee E Tee
  5. Diep Ganguly
  6. Peter A Crisp
  7. Su Yin Phua
  8. Chenchen Zhao
  9. Jiaen Qiu
  10. Jiyoung Park
  11. Miing Tiem Yong
  12. Nazia Nisar
  13. Arun Kumar Yadav
  14. Benjamin Schwessinger
  15. John Rathjen
  16. Christopher I Cazzonelli
  17. Philippa B Wilson
  18. Matthew Gilliham
  19. Zhong-Hua Chen
  20. Barry J Pogson  Is a corresponding author
  1. Faculty of Science, Kasetsart University, Thailand
  2. CSIRO Agriculture, Australia
  3. The Australian National University, Australia
  4. Western Sydney University, Australia
  5. University of Adelaide, Australia
  6. University of California, San Diego, United States

Abstract

Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3′-phosphoadenosine 5′- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Wannarat Pornsiriwong

    Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  2. Gonzalo M Estavillo

    CSIRO Agriculture, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai Xun Chan

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Estee E Tee

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Diep Ganguly

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter A Crisp

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-0130
  7. Su Yin Phua

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Chenchen Zhao

    School of Science and Health, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Jiaen Qiu

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiyoung Park

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Miing Tiem Yong

    School of Science and Health, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Nazia Nisar

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Arun Kumar Yadav

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Benjamin Schwessinger

    Research School of Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. John Rathjen

    Research School of Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Christopher I Cazzonelli

    Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. Philippa B Wilson

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. Matthew Gilliham

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-3078
  19. Zhong-Hua Chen

    School of Science and Health, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  20. Barry J Pogson

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    For correspondence
    barry.pogson@anu.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1869-2423

Funding

Australian Research Council (CE140100008)

  • Wannarat Pornsiriwong
  • Gonzalo M Estavillo
  • Kai Xun Chan
  • Estee E Tee
  • Diep Ganguly
  • Peter A Crisp
  • Su Yin Phua
  • Jiaen Qiu
  • Nazia Nisar
  • Arun Kumar Yadav
  • Christopher I Cazzonelli
  • Philippa B Wilson
  • Matthew Gilliham

National Institutes of Health (GM060396)

  • Jiyoung Park

Human Frontier Science Program

  • Jiyoung Park

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimentation involving Xenopus oocytes were performed in strict accordance to the University of Adelaide ethics committee guidelines. All Xenopus experiments received ethical approval (Animal Ethics Application # S-2014-192, University of Adelaide).

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Version history

  1. Received: November 16, 2016
  2. Accepted: March 16, 2017
  3. Accepted Manuscript published: March 21, 2017 (version 1)
  4. Version of Record published: April 26, 2017 (version 2)
  5. Version of Record updated: May 5, 2017 (version 3)

Copyright

© 2017, Pornsiriwong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,160
    Page views
  • 1,230
    Downloads
  • 110
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wannarat Pornsiriwong
  2. Gonzalo M Estavillo
  3. Kai Xun Chan
  4. Estee E Tee
  5. Diep Ganguly
  6. Peter A Crisp
  7. Su Yin Phua
  8. Chenchen Zhao
  9. Jiaen Qiu
  10. Jiyoung Park
  11. Miing Tiem Yong
  12. Nazia Nisar
  13. Arun Kumar Yadav
  14. Benjamin Schwessinger
  15. John Rathjen
  16. Christopher I Cazzonelli
  17. Philippa B Wilson
  18. Matthew Gilliham
  19. Zhong-Hua Chen
  20. Barry J Pogson
(2017)
A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination
eLife 6:e23361.
https://doi.org/10.7554/eLife.23361

Share this article

https://doi.org/10.7554/eLife.23361

Further reading

    1. Cell Biology
    2. Plant Biology
    Maciek Adamowski, Ivana Matijević, Jiří Friml
    Research Article

    The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Pradeep Kumar, Ankit Roy ... Rajan Sankaranarayanan
    Research Article

    Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.