A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination

  1. Wannarat Pornsiriwong
  2. Gonzalo M Estavillo
  3. Kai Xun Chan
  4. Estee E Tee
  5. Diep Ganguly
  6. Peter A Crisp
  7. Su Yin Phua
  8. Chenchen Zhao
  9. Jiaen Qiu
  10. Jiyoung Park
  11. Miing Tiem Yong
  12. Nazia Nisar
  13. Arun Kumar Yadav
  14. Benjamin Schwessinger
  15. John Rathjen
  16. Christopher I Cazzonelli
  17. Philippa B Wilson
  18. Matthew Gilliham
  19. Zhong-Hua Chen
  20. Barry J Pogson  Is a corresponding author
  1. Faculty of Science, Kasetsart University, Thailand
  2. CSIRO Agriculture, Australia
  3. The Australian National University, Australia
  4. Western Sydney University, Australia
  5. University of Adelaide, Australia
  6. University of California, San Diego, United States

Abstract

Organelle-nuclear retrograde signaling regulates gene expression, but its roles in specialized cells and integration with hormonal signaling remain enigmatic. Here we show that the SAL1-PAP (3′-phosphoadenosine 5′- phosphate) retrograde pathway interacts with abscisic acid (ABA) signaling to regulate stomatal closure and seed germination in Arabidopsis. Genetically or exogenously manipulating PAP bypasses the canonical signaling components ABA Insensitive 1 (ABI1) and Open Stomata 1 (OST1); priming an alternative pathway that restores ABA-responsive gene expression, ROS bursts, ion channel function, stomatal closure and drought tolerance in ost1-2. PAP also inhibits wild type and abi1-1 seed germination by enhancing ABA sensitivity. PAP-XRN signaling interacts with ABA, ROS and Ca2+; up-regulating multiple ABA signaling components, including lowly-expressed Calcium Dependent Protein Kinases (CDPKs) capable of activating the anion channel SLAC1. Thus, PAP exhibits many secondary messenger attributes and exemplifies how retrograde signals can have broader roles in hormone signaling, allowing chloroplasts to fine-tune physiological responses.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Wannarat Pornsiriwong

    Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  2. Gonzalo M Estavillo

    CSIRO Agriculture, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai Xun Chan

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Estee E Tee

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Diep Ganguly

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter A Crisp

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-0130
  7. Su Yin Phua

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Chenchen Zhao

    School of Science and Health, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Jiaen Qiu

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Jiyoung Park

    Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Miing Tiem Yong

    School of Science and Health, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Nazia Nisar

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Arun Kumar Yadav

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Benjamin Schwessinger

    Research School of Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. John Rathjen

    Research School of Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Christopher I Cazzonelli

    Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  17. Philippa B Wilson

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. Matthew Gilliham

    ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0666-3078
  19. Zhong-Hua Chen

    School of Science and Health, Western Sydney University, Richmond, Australia
    Competing interests
    The authors declare that no competing interests exist.
  20. Barry J Pogson

    ARC Centre of Excellence in Plant Energy Biology, The Australian National University, Acton, Australia
    For correspondence
    barry.pogson@anu.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1869-2423

Funding

Australian Research Council (CE140100008)

  • Wannarat Pornsiriwong
  • Gonzalo M Estavillo
  • Kai Xun Chan
  • Estee E Tee
  • Diep Ganguly
  • Peter A Crisp
  • Su Yin Phua
  • Jiaen Qiu
  • Nazia Nisar
  • Arun Kumar Yadav
  • Christopher I Cazzonelli
  • Philippa B Wilson
  • Matthew Gilliham

National Institutes of Health (GM060396)

  • Jiyoung Park

Human Frontier Science Program

  • Jiyoung Park

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimentation involving Xenopus oocytes were performed in strict accordance to the University of Adelaide ethics committee guidelines. All Xenopus experiments received ethical approval (Animal Ethics Application # S-2014-192, University of Adelaide).

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Publication history

  1. Received: November 16, 2016
  2. Accepted: March 16, 2017
  3. Accepted Manuscript published: March 21, 2017 (version 1)
  4. Version of Record published: April 26, 2017 (version 2)
  5. Version of Record updated: May 5, 2017 (version 3)

Copyright

© 2017, Pornsiriwong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,585
    Page views
  • 1,149
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wannarat Pornsiriwong
  2. Gonzalo M Estavillo
  3. Kai Xun Chan
  4. Estee E Tee
  5. Diep Ganguly
  6. Peter A Crisp
  7. Su Yin Phua
  8. Chenchen Zhao
  9. Jiaen Qiu
  10. Jiyoung Park
  11. Miing Tiem Yong
  12. Nazia Nisar
  13. Arun Kumar Yadav
  14. Benjamin Schwessinger
  15. John Rathjen
  16. Christopher I Cazzonelli
  17. Philippa B Wilson
  18. Matthew Gilliham
  19. Zhong-Hua Chen
  20. Barry J Pogson
(2017)
A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination
eLife 6:e23361.
https://doi.org/10.7554/eLife.23361

Further reading

    1. Ecology
    2. Plant Biology
    Yaara Oppenheimer-Shaanan et al.
    Research Article

    Root exudates are thought to play an important role in plant-microbial interactions. In return for nutrition, soil bacteria can increase the bioavailability of soil nutrients. However, root exudates typically decrease in situations such as drought, calling into question the efficacy of solvation and bacteria-dependent mineral uptake in such stress. Here we tested the hypothesis of exudate-driven microbial priming on Cupressus saplings grown in forest soil in custom-made rhizotron boxes. A 1-month imposed drought and concomitant inoculations with a mix of Bacillus subtilis and Pseudomonas stutzeri, bacteria species isolated from the forest soil, were applied using factorial design. Direct bacteria counts and visualization by confocal microscopy showed that both bacteria associated with Cupressus Interestingly, root exudation rates increased 2.3-fold with bacteria under drought, as well as irrigation. Forty four metabolites in exudates were significantly different in concentration between irrigated and drought trees, including phenolic acid compounds and quinate. When adding these metabolites as carbon and nitrogen sources to bacterial cultures of both bacterial species, 8 of 9 metabolites stimulated bacterial growth. Importantly, soil phosphorous bioavailability was maintained only in inoculated trees, mitigating drought-induced decrease in leaf phosphorus and iron. Our observations of increased root exudation rate when drought and inoculation regimes were combined, support the idea of root recruitment of beneficial bacteria, especially under water stress.

    1. Plant Biology
    Jeffrey C Berry et al.
    Tools and Resources

    Environmental variability poses a major challenge to any field study. Researchers attempt to mitigate this challenge through replication. Thus, the ability to detect experimental signals is determined by the degree of replication and the amount of environmental variation, noise, within the experimental system. A major source of noise in field studies comes from the natural heterogeneity of soil properties which create microtreatments throughout the field. In addition, the variation within different soil properties is often nonrandomly distributed across a field. We explore this challenge through a sorghum field trial dataset with accompanying plant, microbiome, and soil property data. Diverse sorghum genotypes and two watering regimes were applied in a split-plot design. We describe a process of identifying, estimating, and controlling for the effects of spatially distributed soil properties on plant traits and microbial communities using minimal degrees of freedom. Importantly, this process provides a method with which sources of environmental variation in field data can be identified and adjusted, improving our ability to resolve effects of interest and to quantify subtle phenotypes.