Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy

  1. Naonobu Fujita  Is a corresponding author
  2. Wilson Huang
  3. Tzu-han Lin
  4. Jean-Francois Groulx
  5. Steve Jean
  6. Yoshihiko Kuchitsu
  7. Ikuko Koyama-Honda
  8. Noboru Mizushima
  9. Mitsunori Fukuda
  10. Amy A Kiger  Is a corresponding author
  1. University of California, San Diego, United States
  2. Tohoku University, Japan
  3. The University of Tokyo, Japan

Abstract

Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms.

Article and author information

Author details

  1. Naonobu Fujita

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    naonobu.fujita.b8@tohoku.ac.jp
    Competing interests
    No competing interests declared.
  2. Wilson Huang

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Tzu-han Lin

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Jean-Francois Groulx

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Steve Jean

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Yoshihiko Kuchitsu

    Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
    Competing interests
    No competing interests declared.
  7. Ikuko Koyama-Honda

    Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Noboru Mizushima

    Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Noboru Mizushima, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6258-6444
  9. Mitsunori Fukuda

    Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
    Competing interests
    No competing interests declared.
  10. Amy A Kiger

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    akiger@ucsd.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4300-176X

Funding

American Heart Association (Innovative Research Grant,15IRG22830029)

  • Amy A Kiger

Japan Society for the Promotion of Science (Postdoctoral Fellowship)

  • Naonobu Fujita

Uehara Memorial Foundation (Postdoctoral Fellowship)

  • Naonobu Fujita

Kanae Foundation (Postdoctoral Fellowship)

  • Naonobu Fujita

Scientific Research on Innovative Areas (Grant-in-Aid for Scientific Research,25111005)

  • Noboru Mizushima

Ministry of Education, Culture, Sports, Science, and Technology (Grant-in-Aid for Scientific Research,16H01189)

  • Mitsunori Fukuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Fujita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,721
    views
  • 1,199
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Naonobu Fujita
  2. Wilson Huang
  3. Tzu-han Lin
  4. Jean-Francois Groulx
  5. Steve Jean
  6. Yoshihiko Kuchitsu
  7. Ikuko Koyama-Honda
  8. Noboru Mizushima
  9. Mitsunori Fukuda
  10. Amy A Kiger
(2017)
Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy
eLife 6:e23367.
https://doi.org/10.7554/eLife.23367

Share this article

https://doi.org/10.7554/eLife.23367

Further reading

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.

    1. Cell Biology
    2. Developmental Biology
    Evgenia Leikina, Jarred M Whitlock ... Leonid Chernomordik
    Research Article

    The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells – generated by an increased number of cell fusion events – have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La’s unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.