Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy

  1. Naonobu Fujita  Is a corresponding author
  2. Wilson Huang
  3. Tzu-han Lin
  4. Jean-Francois Groulx
  5. Steve Jean
  6. Yoshihiko Kuchitsu
  7. Ikuko Koyama-Honda
  8. Noboru Mizushima
  9. Mitsunori Fukuda
  10. Amy A Kiger  Is a corresponding author
  1. University of California, San Diego, United States
  2. Tohoku University, Japan
  3. The University of Tokyo, Japan

Abstract

Transverse (T)-tubules make-up a specialized network of tubulated muscle cell membranes involved in excitation-contraction coupling for power of contraction. Little is known about how T-tubules maintain highly organized structures and contacts throughout the contractile system despite the ongoing muscle remodeling that occurs with muscle atrophy, damage and aging. We uncovered an essential role for autophagy in T-tubule remodeling with genetic screens of a developmentally regulated remodeling program in Drosophila abdominal muscles. Here, we show that autophagy is both upregulated with and required for progression through T-tubule disassembly stages. Along with known mediators of autophagosome-lysosome fusion, our screens uncovered an unexpected shared role for Rab2 with a broadly conserved function in autophagic clearance. Rab2 localizes to autophagosomes and binds to HOPS complex members, suggesting a direct role in autophagosome tethering/fusion. Together, the high membrane flux with muscle remodeling permits unprecedented analysis both of T-tubule dynamics and fundamental trafficking mechanisms.

Article and author information

Author details

  1. Naonobu Fujita

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    naonobu.fujita.b8@tohoku.ac.jp
    Competing interests
    No competing interests declared.
  2. Wilson Huang

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Tzu-han Lin

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Jean-Francois Groulx

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Steve Jean

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Yoshihiko Kuchitsu

    Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
    Competing interests
    No competing interests declared.
  7. Ikuko Koyama-Honda

    Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    No competing interests declared.
  8. Noboru Mizushima

    Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
    Competing interests
    Noboru Mizushima, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6258-6444
  9. Mitsunori Fukuda

    Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
    Competing interests
    No competing interests declared.
  10. Amy A Kiger

    Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
    For correspondence
    akiger@ucsd.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4300-176X

Funding

American Heart Association (Innovative Research Grant,15IRG22830029)

  • Amy A Kiger

Japan Society for the Promotion of Science (Postdoctoral Fellowship)

  • Naonobu Fujita

Uehara Memorial Foundation (Postdoctoral Fellowship)

  • Naonobu Fujita

Kanae Foundation (Postdoctoral Fellowship)

  • Naonobu Fujita

Scientific Research on Innovative Areas (Grant-in-Aid for Scientific Research,25111005)

  • Noboru Mizushima

Ministry of Education, Culture, Sports, Science, and Technology (Grant-in-Aid for Scientific Research,16H01189)

  • Mitsunori Fukuda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Fujita et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,874
    views
  • 1,204
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Naonobu Fujita
  2. Wilson Huang
  3. Tzu-han Lin
  4. Jean-Francois Groulx
  5. Steve Jean
  6. Yoshihiko Kuchitsu
  7. Ikuko Koyama-Honda
  8. Noboru Mizushima
  9. Mitsunori Fukuda
  10. Amy A Kiger
(2017)
Genetic screen in Drosophila muscle identifies autophagy-mediated T-tubule remodeling and a Rab2 role in autophagy
eLife 6:e23367.
https://doi.org/10.7554/eLife.23367

Share this article

https://doi.org/10.7554/eLife.23367

Further reading

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.