Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and co-evolutionary sequence analysis

  1. Duccio Malinverni
  2. Alfredo Jost Lopez
  3. Paolo De Los Rios
  4. Gerhard Hummer
  5. Alessandro Barducci  Is a corresponding author
  1. Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne - EPFL, Switzerland
  2. Max Planck Institute of Biophysics, Germany
  3. Inserm, U1054, France

Abstract

The interaction between the Heat Shock Proteins 70 and 40 is at the core of the ATPase regulation of the chaperone machinery that maintains protein homeostasis. However, the structural details of the interaction are still elusive and contrasting models have been proposed for the transient Hsp70/Hsp40 complexes. Here we combine molecular simulations based on both coarse-grained and atomistic models with co-evolutionary sequence analysis to shed light on this problem by focusing on the bacterial DnaK/DnaJ system. The integration of these complementary approaches resulted in a novel structural model that rationalizes previous experimental observations. We identify an evolutionarily conserved interaction surface formed by helix II of the DnaJ J-domain and a structurally contiguous region of DnaK, involving lobe IIA of the nucleotide binding domain, the inter-domain linker and the β-basket of the substrate binding domain.

Article and author information

Author details

  1. Duccio Malinverni

    Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Alfredo Jost Lopez

    Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Paolo De Los Rios

    Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Gerhard Hummer

    Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Alessandro Barducci

    Inserm, U1054, Montpellier, France
    For correspondence
    alessandro.barducci@cbs.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1911-8039

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (2012_149278 & 20020_163042/1)

  • Duccio Malinverni
  • Paolo De Los Rios

Max-Planck-Gesellschaft

  • Alfredo Jost Lopez
  • Gerhard Hummer

Agence Nationale de la Recherche (ANR-14-ACHN-0016)

  • Alessandro Barducci

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Malinverni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,942
    views
  • 568
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Duccio Malinverni
  2. Alfredo Jost Lopez
  3. Paolo De Los Rios
  4. Gerhard Hummer
  5. Alessandro Barducci
(2017)
Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and co-evolutionary sequence analysis
eLife 6:e23471.
https://doi.org/10.7554/eLife.23471

Share this article

https://doi.org/10.7554/eLife.23471

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.