A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex

  1. Nicolas Renier  Is a corresponding author
  2. Chloe Dominici
  3. Reha S Erzurumlu
  4. Claudius F Kratochwil
  5. Filippo M Rijli
  6. Patricia Gaspar
  7. Alain Chédotal  Is a corresponding author
  1. Hôpital de la Pitié-Salpétrière, France
  2. Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, France
  3. University of Maryland School of Medicine, United States
  4. University of Konstanz, Germany
  5. Friedrich Miescher Institute for Biomedical Research, Switzerland
  6. INSERM, U839, Institut du Fer à Moulin, France

Abstract

In mammals, tactile information is mapped topographically onto the contralateral side of the brain in the primary somatosensory cortex (S1). Here we describe that in Robo3 mouse mutants a sizeable fraction of the trigemino-thalamic inputs project ipsilaterally rather than contralaterally. The resulting mixture of crossed and uncrossed sensory inputs creates bilateral whisker maps in the thalamus and cortex. Surprisingly, these maps are segregated resulting in a duplication of whisker representations and a doubling of the number of barrels without changes of the S1 size. Sensory deprivation shows competitive interactions between the ipsi/contralateral whisker maps. This study reveals that the somatosensory system can form a somatotopic map to integrate bilateral sensory inputs but organizes the maps in a different way than in the visual, or auditory systems. Therefore, while the molecular pre-patterning constrains their orientation and position, the preservation of the continuity of inputs defines the layout of the somatosensory maps.

Article and author information

Author details

  1. Nicolas Renier

    ICM - Brain and Spine Institute, Hôpital de la Pitié-Salpétrière, Paris, France
    For correspondence
    nicolas.renier@icm-institute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2642-4402
  2. Chloe Dominici

    Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Reha S Erzurumlu

    Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudius F Kratochwil

    Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5646-3114
  5. Filippo M Rijli

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0515-0182
  6. Patricia Gaspar

    INSERM, U839, Institut du Fer à Moulin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Alain Chédotal

    Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    For correspondence
    alain.chedotal@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7577-3794

Funding

Agence Nationale de la Recherche (ANR-08-MNP-030,ANR-08,MNP-032,ANR-14-CE13-0004-01,ANR-10-LABX-65)

  • Filippo M Rijli
  • Patricia Gaspar
  • Alain Chédotal

Fondation pour la Recherche Médicale (DEQ20120323700)

  • Alain Chédotal

National Institute of Neurological Disorders and Stroke (RO1 NS039050)

  • Reha S Erzurumlu

swiss national science foundation (CRSI33_127440)

  • Filippo M Rijli

Association Française contre les Myopathies

  • Nicolas Renier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: All animal procedures were carried out in accordance to institutional guidelines and approved by the UPMC University ethic committee (ComitÃ{copyright, serif} Charles Darwin, authorization # 03787.02). All surgery was performed under ketamine/xylazine anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: November 21, 2016
  2. Accepted: March 27, 2017
  3. Accepted Manuscript published: March 28, 2017 (version 1)
  4. Accepted Manuscript updated: April 3, 2017 (version 2)
  5. Version of Record published: April 25, 2017 (version 3)

Copyright

© 2017, Renier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,950
    views
  • 716
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Renier
  2. Chloe Dominici
  3. Reha S Erzurumlu
  4. Claudius F Kratochwil
  5. Filippo M Rijli
  6. Patricia Gaspar
  7. Alain Chédotal
(2017)
A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex
eLife 6:e23494.
https://doi.org/10.7554/eLife.23494

Share this article

https://doi.org/10.7554/eLife.23494

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.