A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex

  1. Nicolas Renier  Is a corresponding author
  2. Chloe Dominici
  3. Reha S Erzurumlu
  4. Claudius F Kratochwil
  5. Filippo M Rijli
  6. Patricia Gaspar
  7. Alain Chédotal  Is a corresponding author
  1. Hôpital de la Pitié-Salpétrière, France
  2. Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, France
  3. University of Maryland School of Medicine, United States
  4. University of Konstanz, Germany
  5. Friedrich Miescher Institute for Biomedical Research, Switzerland
  6. INSERM, U839, Institut du Fer à Moulin, France

Abstract

In mammals, tactile information is mapped topographically onto the contralateral side of the brain in the primary somatosensory cortex (S1). Here we describe that in Robo3 mouse mutants a sizeable fraction of the trigemino-thalamic inputs project ipsilaterally rather than contralaterally. The resulting mixture of crossed and uncrossed sensory inputs creates bilateral whisker maps in the thalamus and cortex. Surprisingly, these maps are segregated resulting in a duplication of whisker representations and a doubling of the number of barrels without changes of the S1 size. Sensory deprivation shows competitive interactions between the ipsi/contralateral whisker maps. This study reveals that the somatosensory system can form a somatotopic map to integrate bilateral sensory inputs but organizes the maps in a different way than in the visual, or auditory systems. Therefore, while the molecular pre-patterning constrains their orientation and position, the preservation of the continuity of inputs defines the layout of the somatosensory maps.

Article and author information

Author details

  1. Nicolas Renier

    ICM - Brain and Spine Institute, Hôpital de la Pitié-Salpétrière, Paris, France
    For correspondence
    nicolas.renier@icm-institute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2642-4402
  2. Chloe Dominici

    Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Reha S Erzurumlu

    Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claudius F Kratochwil

    Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5646-3114
  5. Filippo M Rijli

    Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0515-0182
  6. Patricia Gaspar

    INSERM, U839, Institut du Fer à Moulin, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Alain Chédotal

    Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
    For correspondence
    alain.chedotal@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7577-3794

Funding

Agence Nationale de la Recherche (ANR-08-MNP-030,ANR-08,MNP-032,ANR-14-CE13-0004-01,ANR-10-LABX-65)

  • Filippo M Rijli
  • Patricia Gaspar
  • Alain Chédotal

Fondation pour la Recherche Médicale (DEQ20120323700)

  • Alain Chédotal

National Institute of Neurological Disorders and Stroke (RO1 NS039050)

  • Reha S Erzurumlu

swiss national science foundation (CRSI33_127440)

  • Filippo M Rijli

Association Française contre les Myopathies

  • Nicolas Renier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were carried out in accordance to institutional guidelines and approved by the UPMC University ethic committee (ComitÃ{copyright, serif} Charles Darwin, authorization # 03787.02). All surgery was performed under ketamine/xylazine anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Renier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,089
    views
  • 732
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Renier
  2. Chloe Dominici
  3. Reha S Erzurumlu
  4. Claudius F Kratochwil
  5. Filippo M Rijli
  6. Patricia Gaspar
  7. Alain Chédotal
(2017)
A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex
eLife 6:e23494.
https://doi.org/10.7554/eLife.23494

Share this article

https://doi.org/10.7554/eLife.23494

Further reading

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.

    1. Developmental Biology
    Alexandra V Bruter, Ekaterina A Varlamova ... Victor V Tatarskiy
    Research Article

    CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.