Phosphorylation of β-arrestin 2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs

  1. Elisabeth Cassier
  2. Nathalie Gallay
  3. Thomas Bourquard
  4. Sylvie Claeysen
  5. Joël Bockaert
  6. Pascale Crépieux
  7. Anne Poupon
  8. Eric Reiter
  9. Philippe Marin  Is a corresponding author
  10. Franck Vandermoere  Is a corresponding author
  1. CNRS, UMR-5203, Institut de Génomique Fonctionnelle, France
  2. INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, France

Abstract

In addition to their role in desensitization and internalization of G protein-coupled receptors (GPCRs), β-arrestins are essential scaffolds linking GPCRs to Erk1/2 signaling. However, their role in GPCR-operated Erk1/2 activation differs between GPCRs and the underlying mechanism remains poorly characterized. Here, we show that activation of serotonin 5-HT2C receptors, which engage Erk1/2 pathway via a β-arrestin-dependent mechanism, promotes MEK-dependent β-arrestin 2 phosphorylation at Thr383, a necessary step for Erk recruitment to the receptor/β-arrestin complex and Erk activation. Likewise, Thr383 phosphorylation is involved in β-arrestin-dependent Erk1/2 stimulation elicited by other GPCRs such as β2-adrenergic, FSH and CXCR4 receptors, but does not affect the β-arrestin-independent Erk1/2 activation by 5-HT4 receptor. Collectively, these data show that β-arrestin 2 phosphorylation at Thr383 underlies β-arrestin-dependent Erk1/2 activation by GPCRs.

Article and author information

Author details

  1. Elisabeth Cassier

    CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Nathalie Gallay

    INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Bourquard

    INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Sylvie Claeysen

    CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Joël Bockaert

    CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Pascale Crépieux

    INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne Poupon

    INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Eric Reiter

    INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Philippe Marin

    CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
    For correspondence
    philippe.marin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5977-7274
  10. Franck Vandermoere

    CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France
    For correspondence
    franck.vandermoere@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.

Funding

Fondation pour la Recherche Médicale (Contract Equipe FRM 2009)

  • Elisabeth Cassier
  • Sylvie Claeysen
  • Joël Bockaert
  • Philippe Marin
  • Franck Vandermoere

Agence Nationale de la Recherche (Contract ANR-2011-1619 01)

  • Elisabeth Cassier
  • Nathalie Gallay
  • Thomas Bourquard
  • Sylvie Claeysen
  • Joël Bockaert
  • Pascale Crépieux
  • Anne Poupon
  • Eric Reiter
  • Philippe Marin
  • Franck Vandermoere

Centre National de la Recherche Scientifique

  • Elisabeth Cassier
  • Sylvie Claeysen
  • Joël Bockaert
  • Philippe Marin
  • Franck Vandermoere

Institut National de la Santé et de la Recherche Médicale

  • Elisabeth Cassier
  • Sylvie Claeysen
  • Joël Bockaert
  • Philippe Marin
  • Franck Vandermoere

Université de Montpellier

  • Elisabeth Cassier
  • Sylvie Claeysen
  • Joël Bockaert
  • Philippe Marin
  • Franck Vandermoere

Institut National de la Recherche Agronomique

  • Nathalie Gallay
  • Thomas Bourquard
  • Pascale Crépieux
  • Anne Poupon
  • Eric Reiter

Université François-Rabelais

  • Nathalie Gallay
  • Thomas Bourquard
  • Pascale Crépieux
  • Anne Poupon
  • Eric Reiter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Cassier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,709
    views
  • 597
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth Cassier
  2. Nathalie Gallay
  3. Thomas Bourquard
  4. Sylvie Claeysen
  5. Joël Bockaert
  6. Pascale Crépieux
  7. Anne Poupon
  8. Eric Reiter
  9. Philippe Marin
  10. Franck Vandermoere
(2017)
Phosphorylation of β-arrestin 2 at Thr383 by MEK underlies β-arrestin-dependent activation of Erk1/2 by GPCRs
eLife 6:e23777.
https://doi.org/10.7554/eLife.23777

Share this article

https://doi.org/10.7554/eLife.23777

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.