A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres

  1. Jonathan Strecker
  2. Sonia Stinus
  3. Mariana Pliego Caballero
  4. Rachel K Szilard
  5. Michael Chang  Is a corresponding author
  6. Daniel Durocher  Is a corresponding author
  1. Lunenfeld-Tanenbaum Research Institute, Canada
  2. University Medical Center Groningen, Netherlands

Abstract

DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.

Article and author information

Author details

  1. Jonathan Strecker

    Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Sonia Stinus

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Mariana Pliego Caballero

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachel K Szilard

    Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Chang

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    For correspondence
    m.chang@umcg.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1706-3337
  6. Daniel Durocher

    Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
    For correspondence
    durocher@lunenfeld.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3863-8635

Funding

Canadian Institutes of Health Research

  • Jonathan Strecker
  • Daniel Durocher

Krembil Foundation

  • Daniel Durocher

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Sonia Stinus
  • Michael Chang

Canadian Institutes of Health Research (FDN143343)

  • Daniel Durocher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Strecker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,184
    views
  • 471
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Strecker
  2. Sonia Stinus
  3. Mariana Pliego Caballero
  4. Rachel K Szilard
  5. Michael Chang
  6. Daniel Durocher
(2017)
A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres
eLife 6:e23783.
https://doi.org/10.7554/eLife.23783

Share this article

https://doi.org/10.7554/eLife.23783

Further reading

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.