
Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel
- Cited 30
- Views 1,795
- Annotations
Abstract
Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω−3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near M4 and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.
Article and author information
Author details
Funding
American Heart Association (12SDG12070069)
- Sudha Chakrapani
National Institute of General Medical Sciences (R01GM108921)
- Sudha Chakrapani
National Institute of General Medical Sciences (3R01GM108921-03S1)
- Sudha Chakrapani
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Baron Chanda, University of Wisconsin-Madison, United States
Publication history
- Received: December 5, 2016
- Accepted: March 4, 2017
- Accepted Manuscript published: March 6, 2017 (version 1)
- Version of Record published: April 3, 2017 (version 2)
- Version of Record updated: March 26, 2018 (version 3)
Copyright
© 2017, Basak et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,795
- Page views
-
- 502
- Downloads
-
- 30
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Download citations (links to download the citations from this article in formats compatible with various reference manager tools)
Open citations (links to open the citations from this article in various online reference manager services)
Further reading
-
- Structural Biology and Molecular Biophysics
-
- Structural Biology and Molecular Biophysics