Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel

  1. Sandip Basak
  2. Nicolaus Schmandt
  3. Yvonne Gicheru
  4. Sudha Chakrapani  Is a corresponding author
  1. Case Western Reserve University, United States
  2. The University of Chicago, United States

Abstract

Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω−3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near M4 and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Sandip Basak

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolaus Schmandt

    Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yvonne Gicheru

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sudha Chakrapani

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    For correspondence
    Sxc584@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0722-2338

Funding

American Heart Association (12SDG12070069)

  • Sudha Chakrapani

National Institute of General Medical Sciences (R01GM108921)

  • Sudha Chakrapani

National Institute of General Medical Sciences (3R01GM108921-03S1)

  • Sudha Chakrapani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Version history

  1. Received: December 5, 2016
  2. Accepted: March 4, 2017
  3. Accepted Manuscript published: March 6, 2017 (version 1)
  4. Version of Record published: April 3, 2017 (version 2)
  5. Version of Record updated: March 26, 2018 (version 3)

Copyright

© 2017, Basak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,539
    views
  • 591
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandip Basak
  2. Nicolaus Schmandt
  3. Yvonne Gicheru
  4. Sudha Chakrapani
(2017)
Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel
eLife 6:e23886.
https://doi.org/10.7554/eLife.23886

Share this article

https://doi.org/10.7554/eLife.23886

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Ai Nguyen, Huaying Zhao ... Peter Schuck
    Research Article

    Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Thomas Kuhlman
    Insight

    A new study reveals how naturally occurring mutations affect the biophysical properties of nucleocapsid proteins in SARS-CoV-2.