1. Developmental Biology
Download icon

Longevity is impacted by growth hormone action during early postnatal period

  1. Liou Y Sun  Is a corresponding author
  2. Yimin Fang
  3. Amit Patki
  4. Jacob JE Koopman
  5. David B Allison
  6. Cristal Hill
  7. Michal M Masternak
  8. Justin Darcy
  9. Jian Wang
  10. Samuel McFadden
  11. Andrzej Bartke
  1. University of Alabama at Birmingham, United States
  2. Southern Illinois University, School of Medicine, United States
  3. Leiden University Medical Center, Netherlands
  4. College of Medicine, University of Central Florida, United States
Research Article
  • Cited 27
  • Views 2,500
  • Annotations
Cite this article as: eLife 2017;6:e24059 doi: 10.7554/eLife.24059

Abstract

Life-long lack of growth hormone (GH) action can produce remarkable extension of longevity in mice. Here we report that GH treatment limited to a few weeks during development influences the lifespan of long-lived Ames dwarf and normal littermate control mice in a genotype and sex-specific manner. Studies in a separate cohort of Ames dwarf mice show that this short period of the GH exposure during early development produces persistent phenotypic, metabolic and molecular changes that are evident in late adult life. These effects may represent mechanisms responsible for reduced longevity of dwarf mice exposed to GH treatment early in life. Our data suggest that developmental programming of aging importantly contributes to (and perhaps explains) the well documented developmental origins of adult disease.

Article and author information

Author details

  1. Liou Y Sun

    Department of Biology, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    leeosun@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9802-6780
  2. Yimin Fang

    Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amit Patki

    Department of Biostatistics, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacob JE Koopman

    Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. David B Allison

    Department of Biology, University of Alabama at Birmingham, Brimingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cristal Hill

    Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michal M Masternak

    Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Justin Darcy

    Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jian Wang

    Department of Biology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Samuel McFadden

    Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Andrzej Bartke

    Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Aging

  • Liou Y Sun

National Institute of Diabetes and Digestive and Kidney Diseases

  • David B Allison

National Insitute on Aging

  • Andrzej Bartke

National Insitute on Aging

  • David B Allison

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (IACUC-20292) of the University of Alabama and (#178-020-001) of SIU school of medicine. The protocol was approved by the Committee on the Ethics of Animal Experiments of the UAB and SIUSOM.

Reviewing Editor

  1. Andrew Dillin, Howard Hughes Medical Institute, University of California, Berkeley, United States

Publication history

  1. Received: December 8, 2016
  2. Accepted: June 19, 2017
  3. Accepted Manuscript published: July 4, 2017 (version 1)
  4. Version of Record published: July 18, 2017 (version 2)

Copyright

© 2017, Sun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,500
    Page views
  • 383
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Yelena Y Bernadskaya et al.
    Research Article

    Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Hourinaz Behesti et al.
    Research Article

    Brain development is regulated by conserved transcriptional programs across species, but little is known about divergent mechanisms that create species-specific characteristics. Among brain regions, human cerebellar histogenesis differs in complexity compared with non-human primates and rodents, making it important to develop methods to generate human cerebellar neurons that closely resemble those in the developing human cerebellum. We report a rapid protocol for the derivation of the human ATOH1 lineage, the precursor of excitatory cerebellar neurons, from human pluripotent stem cells (hPSC). Upon transplantation into juvenile mice, hPSC-derived cerebellar granule cells migrated along glial fibers and integrated into the cerebellar cortex. By Translational Ribosome Affinity Purification-seq, we identified an unexpected temporal shift in the expression of RBFOX3 (NeuN) and NEUROD1, which are classically associated with differentiated neurons, in the human outer external granule layer. This molecular divergence may enable the protracted development of the human cerebellum compared to mice.