Systematic morphological profiling of human gene and allele function via Cell Painting

  1. Mohammad Hossein Rohban
  2. Shantanu Singh
  3. Xiaoyun Wu
  4. Julia B Berthet
  5. Mark-Anthony Bray
  6. Yashaswi Shrestha
  7. Xaralabos Varelas
  8. Jesse S Boehm
  9. Anne E Carpenter  Is a corresponding author
  1. Broad Institute, United States
  2. Boston University School of Medicine, United States
  3. Novartis Institutes for BioMedical Research, United States

Abstract

We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consistent with known functional annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-based visualization methods to interpret the morphological changes for specific clusters. This unbiased morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/WWTR1-responsive pathways. We confirmed this discovery of functional connectivity between the NF-κB pathway and Hippo pathway effectors at the transcriptional level, thereby expanding knowledge of these two signaling pathways that critically regulate tumor initiation and progression. We make the images and raw data publicly available, providing an initial morphological map of major biological pathways for future study.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Mohammad Hossein Rohban

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6589-850X
  2. Shantanu Singh

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoyun Wu

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julia B Berthet

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark-Anthony Bray

    Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yashaswi Shrestha

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xaralabos Varelas

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2882-4541
  8. Jesse S Boehm

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anne E Carpenter

    Broad Institute, Cambridge, United States
    For correspondence
    anne@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1555-8261

Funding

National Science Foundation (NSF CAREER DBI 1148823)

  • Anne E Carpenter

Broad Institute

  • Anne E Carpenter

Carlos Slim Foundation

  • Anne E Carpenter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffrey Settleman, Calico Life Sciences, United States

Version history

  1. Received: December 7, 2016
  2. Accepted: March 14, 2017
  3. Accepted Manuscript published: March 18, 2017 (version 1)
  4. Version of Record published: April 10, 2017 (version 2)

Copyright

© 2017, Rohban et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,979
    views
  • 1,730
    downloads
  • 123
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohammad Hossein Rohban
  2. Shantanu Singh
  3. Xiaoyun Wu
  4. Julia B Berthet
  5. Mark-Anthony Bray
  6. Yashaswi Shrestha
  7. Xaralabos Varelas
  8. Jesse S Boehm
  9. Anne E Carpenter
(2017)
Systematic morphological profiling of human gene and allele function via Cell Painting
eLife 6:e24060.
https://doi.org/10.7554/eLife.24060

Share this article

https://doi.org/10.7554/eLife.24060

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.