1. Computational and Systems Biology
Download icon

Systematic morphological profiling of human gene and allele function via Cell Painting

  1. Mohammad Hossein Rohban
  2. Shantanu Singh
  3. Xiaoyun Wu
  4. Julia B Berthet
  5. Mark-Anthony Bray
  6. Yashaswi Shrestha
  7. Xaralabos Varelas
  8. Jesse S Boehm
  9. Anne E Carpenter  Is a corresponding author
  1. Broad Institute, United States
  2. Boston University School of Medicine, United States
  3. Novartis Institutes for BioMedical Research, United States
Tools and Resources
  • Cited 36
  • Views 7,716
  • Annotations
Cite this article as: eLife 2017;6:e24060 doi: 10.7554/eLife.24060

Abstract

We hypothesized that human genes and disease-associated alleles might be systematically functionally annotated using morphological profiling of cDNA constructs, via a microscopy-based Cell Painting assay. Indeed, 50% of the 220 tested genes yielded detectable morphological profiles, which grouped into biologically meaningful gene clusters consistent with known functional annotation (e.g., the RAS-RAF-MEK-ERK cascade). We used novel subpopulation-based visualization methods to interpret the morphological changes for specific clusters. This unbiased morphologic map of gene function revealed TRAF2/c-REL negative regulation of YAP1/WWTR1-responsive pathways. We confirmed this discovery of functional connectivity between the NF-κB pathway and Hippo pathway effectors at the transcriptional level, thereby expanding knowledge of these two signaling pathways that critically regulate tumor initiation and progression. We make the images and raw data publicly available, providing an initial morphological map of major biological pathways for future study.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Mohammad Hossein Rohban

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6589-850X
  2. Shantanu Singh

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoyun Wu

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julia B Berthet

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mark-Anthony Bray

    Novartis Institutes for BioMedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yashaswi Shrestha

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xaralabos Varelas

    Department of Biochemistry, Boston University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2882-4541
  8. Jesse S Boehm

    Broad Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Anne E Carpenter

    Broad Institute, Cambridge, United States
    For correspondence
    anne@broadinstitute.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1555-8261

Funding

National Science Foundation (NSF CAREER DBI 1148823)

  • Anne E Carpenter

Broad Institute

  • Anne E Carpenter

Carlos Slim Foundation

  • Anne E Carpenter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffrey Settleman, Calico Life Sciences, United States

Publication history

  1. Received: December 7, 2016
  2. Accepted: March 14, 2017
  3. Accepted Manuscript published: March 18, 2017 (version 1)
  4. Version of Record published: April 10, 2017 (version 2)

Copyright

© 2017, Rohban et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,716
    Page views
  • 1,280
    Downloads
  • 36
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Hannah R Meredith et al.
    Research Article

    Human mobility is a core component of human behavior and its quantification is critical for understanding its impact on infectious disease transmission, traffic forecasting, access to resources and care, intervention strategies, and migratory flows. When mobility data are limited, spatial interaction models have been widely used to estimate human travel, but have not been extensively validated in low- and middle-income settings. Geographic, sociodemographic, and infrastructure differences may impact the ability for models to capture these patterns, particularly in rural settings. Here, we analyzed mobility patterns inferred from mobile phone data in four Sub-Saharan African countries to investigate the ability for variants on gravity and radiation models to estimate travel. Adjusting the gravity model such that parameters were fit to different trip types, including travel between more or less populated areas and/or different regions, improved model fit in all four countries. This suggests that alternative models may be more useful in these settings and better able to capture the range of mobility patterns observed.

    1. Computational and Systems Biology
    Daniel Griffith, Alex S Holehouse
    Tools and Resources

    The rise of high-throughput experiments has transformed how scientists approach biological questions. The ubiquity of large-scale assays that can test thousands of samples in a day has necessitated the development of new computational approaches to interpret this data. Among these tools, machine learning approaches are increasingly being utilized due to their ability to infer complex nonlinear patterns from high-dimensional data. Despite their effectiveness, machine learning (and in particular deep learning) approaches are not always accessible or easy to implement for those with limited computational expertise. Here we present PARROT, a general framework for training and applying deep learning-based predictors on large protein datasets. Using an internal recurrent neural network architecture, PARROT is capable of tackling both classification and regression tasks while only requiring raw protein sequences as input. We showcase the potential uses of PARROT on three diverse machine learning tasks: predicting phosphorylation sites, predicting transcriptional activation function of peptides generated by high-throughput reporter assays, and predicting the fibrillization propensity of amyloid beta with data generated by deep mutational scanning. Through these examples, we demonstrate that PARROT is easy to use, performs comparably to state-of-the-art computational tools, and is applicable for a wide array of biological problems.