Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle

  1. Timothy J Ross-Elliott
  2. Kaare H Jensen
  3. Katrine S Haaning
  4. Brittney Michaelle Wager
  5. Jan Knoblauch
  6. Alexander H Howell
  7. Daniel L Mullendore
  8. Alexander G Monteith
  9. Danae Paultre
  10. Dawei Yan
  11. Sofia Otero-Perez
  12. Matthieu Bourdon
  13. Ross Sager
  14. Jung-Youn Lee
  15. Ykä Helariutta
  16. Michael Knoblauch  Is a corresponding author
  17. Karl John Oparka  Is a corresponding author
  1. Washington State University, United States
  2. Technical University of Denmark, Denmark
  3. Oxford Brookes University, United Kingdom
  4. University of Edinburgh, United Kingdom
  5. University of Cambridge, United Kingdom
  6. University of Delaware, United States

Abstract

In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of 'funnel plasmodesmata'. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as 'batch unloading'. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots.

Article and author information

Author details

  1. Timothy J Ross-Elliott

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaare H Jensen

    Department of Physics, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Katrine S Haaning

    Department of Physics, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Brittney Michaelle Wager

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jan Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander H Howell

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel L Mullendore

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander G Monteith

    Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1731-0446
  9. Danae Paultre

    Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Dawei Yan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Sofia Otero-Perez

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthieu Bourdon

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ross Sager

    Department of Plant and Soil Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jung-Youn Lee

    Department of Plant and Soil Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Ykä Helariutta

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Michael Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    For correspondence
    knoblauch@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0391-9891
  17. Karl John Oparka

    Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    karl.oparka@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (1146500)

  • Michael Knoblauch

Biotechnology and Biological Sciences Research Council

  • Karl John Oparka

Carlsbergfondet

  • Kaare H Jensen

Villum Fonden (13166)

  • Kaare H Jensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Version history

  1. Received: December 10, 2016
  2. Accepted: February 17, 2017
  3. Accepted Manuscript published: February 23, 2017 (version 1)
  4. Version of Record published: March 24, 2017 (version 2)
  5. Version of Record updated: November 13, 2017 (version 3)

Copyright

© 2017, Ross-Elliott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,882
    views
  • 1,784
    downloads
  • 173
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy J Ross-Elliott
  2. Kaare H Jensen
  3. Katrine S Haaning
  4. Brittney Michaelle Wager
  5. Jan Knoblauch
  6. Alexander H Howell
  7. Daniel L Mullendore
  8. Alexander G Monteith
  9. Danae Paultre
  10. Dawei Yan
  11. Sofia Otero-Perez
  12. Matthieu Bourdon
  13. Ross Sager
  14. Jung-Youn Lee
  15. Ykä Helariutta
  16. Michael Knoblauch
  17. Karl John Oparka
(2017)
Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle
eLife 6:e24125.
https://doi.org/10.7554/eLife.24125

Share this article

https://doi.org/10.7554/eLife.24125

Further reading

    1. Plant Biology
    C Jake Harris, Zhenhui Zhong ... Steven E Jacobsen
    Research Article

    Silencing pathways prevent transposable element (TE) proliferation and help to maintain genome integrity through cell division. Silenced genomic regions can be classified as either euchromatic or heterochromatic, and are targeted by genetically separable epigenetic pathways. In plants, the RNA-directed DNA methylation (RdDM) pathway targets mostly euchromatic regions, while CMT DNA methyltransferases are mainly associated with heterochromatin. However, many epigenetic features - including DNA methylation patterning - are largely indistinguishable between these regions, so how the functional separation is maintained is unclear. The linker histone H1 is preferentially localized to heterochromatin and has been proposed to restrict RdDM from encroachment. To test this hypothesis, we followed RdDM genomic localization in an h1 mutant by performing ChIP-seq on the largest subunit, NRPE1, of the central RdDM polymerase, Pol V. Loss of H1 resulted in NRPE1 enrichment predominantly in heterochromatic TEs. Increased NRPE1 binding was associated with increased chromatin accessibility in h1, suggesting that H1 restricts NRPE1 occupancy by compacting chromatin. However, RdDM occupancy did not impact H1 localization, demonstrating that H1 hierarchically restricts RdDM positioning. H1 mutants experience major symmetric (CG and CHG) DNA methylation gains, and by generating an h1/nrpe1 double mutant, we demonstrate these gains are largely independent of RdDM. However, loss of NRPE1 occupancy from a subset of euchromatic regions in h1 corresponded to the loss of methylation in all sequence contexts, while at ectopically bound heterochromatic loci, NRPE1 deposition correlated with increased methylation specifically in the CHH context. Additionally, we found that H1 similarly restricts the occupancy of the methylation reader, SUVH1, and polycomb-mediated H3K27me3. Together, the results support a model whereby H1 helps maintain the exclusivity of heterochromatin by preventing encroachment from other competing pathways.

    1. Plant Biology
    Oceane Cassan, Lea-Lou Pimpare ... Antoine Martin
    Research Article

    The elevation of atmospheric CO2 leads to a decline in plant mineral content, which might pose a significant threat to food security in coming decades. Although few genes have been identified for the negative effect of elevated CO2 on plant mineral composition, several studies suggest the existence of genetic factors. Here, we performed a large-scale study to explore genetic diversity of plant ionome responses to elevated CO2, using six hundred Arabidopsis thaliana accessions, representing geographical distributions ranging from worldwide to regional and local environments. We show that growth under elevated CO2 leads to a global decrease of ionome content, whatever the geographic distribution of the population. We observed a high range of genetic diversity, ranging from the most negative effect to resilience or even to a benefit in response to elevated CO2. Using genome-wide association mapping, we identified a large set of genes associated with this response, and we demonstrated that the function of one of these genes is involved in the negative effect of elevated CO2 on plant mineral composition. This resource will contribute to understand the mechanisms underlying the effect of elevated CO2 on plant mineral nutrition, and could help towards the development of crops adapted to a high-CO2 world.