1. Plant Biology
Download icon

Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle

  1. Timothy J Ross-Elliott
  2. Kaare H Jensen
  3. Katrine S Haaning
  4. Brittney Michaelle Wager
  5. Jan Knoblauch
  6. Alexander H Howell
  7. Daniel L Mullendore
  8. Alexander G Monteith
  9. Danae Paultre
  10. Dawei Yan
  11. Sofia Otero-Perez
  12. Matthieu Bourdon
  13. Ross Sager
  14. Jung-Youn Lee
  15. Ykä Helariutta
  16. Michael Knoblauch  Is a corresponding author
  17. Karl John Oparka  Is a corresponding author
  1. Washington State University, United States
  2. Technical University of Denmark, Denmark
  3. Oxford Brookes University, United Kingdom
  4. University of Edinburgh, United Kingdom
  5. University of Cambridge, United Kingdom
  6. University of Delaware, United States
Research Article
  • Cited 83
  • Views 6,633
  • Annotations
Cite this article as: eLife 2017;6:e24125 doi: 10.7554/eLife.24125

Abstract

In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of 'funnel plasmodesmata'. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as 'batch unloading'. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots.

Article and author information

Author details

  1. Timothy J Ross-Elliott

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kaare H Jensen

    Department of Physics, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Katrine S Haaning

    Department of Physics, Technical University of Denmark, Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Brittney Michaelle Wager

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jan Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander H Howell

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel L Mullendore

    School of Biological Sciences, Washington State University, Pullman, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander G Monteith

    Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1731-0446
  9. Danae Paultre

    Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Dawei Yan

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Sofia Otero-Perez

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthieu Bourdon

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Ross Sager

    Department of Plant and Soil Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Jung-Youn Lee

    Department of Plant and Soil Sciences, University of Delaware, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Ykä Helariutta

    Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Michael Knoblauch

    School of Biological Sciences, Washington State University, Pullman, United States
    For correspondence
    knoblauch@wsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0391-9891
  17. Karl John Oparka

    Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    karl.oparka@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (1146500)

  • Michael Knoblauch

Biotechnology and Biological Sciences Research Council

  • Karl John Oparka

Carlsbergfondet

  • Kaare H Jensen

Villum Fonden (13166)

  • Kaare H Jensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Publication history

  1. Received: December 10, 2016
  2. Accepted: February 17, 2017
  3. Accepted Manuscript published: February 23, 2017 (version 1)
  4. Version of Record published: March 24, 2017 (version 2)
  5. Version of Record updated: November 13, 2017 (version 3)

Copyright

© 2017, Ross-Elliott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,633
    Page views
  • 1,417
    Downloads
  • 83
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Plant Biology
    Rosa Pipitone et al.
    Research Article

    Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling ‘Structure Establishment Phase’ followed by a ‘Chloroplast Proliferation Phase’ during cell expansion. Moreover, these data detail thylakoid membrane expansion during de-etiolation at the seedling level and the relative contribution and differential regulation of proteins and lipids at each developmental stage. Altogether, we establish a roadmap for chloroplast differentiation, a critical process for plant photoautotrophic growth and survival.

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Jernej Turnšek et al.
    Research Article

    Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed, however proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model marine diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.