Monitoring ATP dynamics in electrically active white matter tracts

  1. Andrea Trevisiol
  2. Aiman S Saab
  3. Ulrike Winkler
  4. Grit Marx
  5. Hiromi Imamura
  6. Wiebke Möbius
  7. Kathrin Kusch
  8. Klaus-Armin Nave  Is a corresponding author
  9. Johannes Hirrlinger  Is a corresponding author
  1. Max-Planck-Institute for Experimental Medicine, Germany
  2. University of Leipzig, Germany
  3. Kyoto University, Japan

Abstract

In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders.

Article and author information

Author details

  1. Andrea Trevisiol

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
  2. Aiman S Saab

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
  3. Ulrike Winkler

    Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
    Competing interests
    No competing interests declared.
  4. Grit Marx

    Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
    Competing interests
    No competing interests declared.
  5. Hiromi Imamura

    Graduate School of Biostudies, Kyoto University, Sakyo-ku, Japan
    Competing interests
    No competing interests declared.
  6. Wiebke Möbius

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2902-7165
  7. Kathrin Kusch

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    No competing interests declared.
  8. Klaus-Armin Nave

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    For correspondence
    nave@em.mpg.de
    Competing interests
    Klaus-Armin Nave, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8724-9666
  9. Johannes Hirrlinger

    Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
    For correspondence
    johannes.hirrlinger@medizin.uni-leipzig.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6327-0089

Funding

Deutsche Forschungsgemeinschaft

  • Johannes Hirrlinger

H2020 European Research Council

  • Klaus-Armin Nave

European Molecular Biology Organization

  • Aiman S Saab

LAVES Niedersachsen).LTLT/involved_commentsGTGTLTLTinvolved_indGTGT1LTLT/involved_indGTGTLTLT/animal_subjectsGTGTLTLThuman_subjectsGTGTLTLTinvolved_indGTGT0LTLT/involved_indGTGTLTLT/human_subjectsGTGTLTLT/xmlGTGT"

Ethics

Animal experimentation: Animals were treated in accordance with the German Protection of Animals Act (TSchG {section sign}4 Abs. 3), with the guidelines for the welfare of experimental animals issued by the European Communities Council Directive 2010/63/EU as well as the regulation of the institutional "Tierschutzkommission" and the local authorities (T04/13, T20/16; Landesdirektion Leipzig, LAVES Niedersachsen).

Copyright

© 2017, Trevisiol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,521
    views
  • 978
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Trevisiol
  2. Aiman S Saab
  3. Ulrike Winkler
  4. Grit Marx
  5. Hiromi Imamura
  6. Wiebke Möbius
  7. Kathrin Kusch
  8. Klaus-Armin Nave
  9. Johannes Hirrlinger
(2017)
Monitoring ATP dynamics in electrically active white matter tracts
eLife 6:e24241.
https://doi.org/10.7554/eLife.24241

Share this article

https://doi.org/10.7554/eLife.24241

Further reading

    1. Neuroscience
    Katie Morris, Edita Bulovaite ... Mathew H Horrocks
    Research Article

    The concept that dimeric protein complexes in synapses can sequentially replace their subunits has been a cornerstone of Francis Crick’s 1984 hypothesis, explaining how long-term memories could be maintained in the face of short protein lifetimes. However, it is unknown whether the subunits of protein complexes that mediate memory are sequentially replaced in the brain and if this process is linked to protein lifetime. We address these issues by focusing on supercomplexes assembled by the abundant postsynaptic scaffolding protein PSD95, which plays a crucial role in memory. We used single-molecule detection, super-resolution microscopy and MINFLUX to probe the molecular composition of PSD95 supercomplexes in mice carrying genetically encoded HaloTags, eGFP, and mEoS2. We found a population of PSD95-containing supercomplexes comprised of two copies of PSD95, with a dominant 12.7 nm separation. Time-stamping of PSD95 subunits in vivo revealed that each PSD95 subunit was sequentially replaced over days and weeks. Comparison of brain regions showed subunit replacement was slowest in the cortex, where PSD95 protein lifetime is longest. Our findings reveal that protein supercomplexes within the postsynaptic density can be maintained by gradual replacement of individual subunits providing a mechanism for stable maintenance of their organization. Moreover, we extend Crick’s model by suggesting that synapses with slow subunit replacement of protein supercomplexes and long-protein lifetimes are specialized for long-term memory storage and that these synapses are highly enriched in superficial layers of the cortex where long-term memories are stored.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.