A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis

  1. Emilie-Fleur Neubaeur
  2. Angela Z Poole
  3. Philipp Neubauer
  4. Olivier Detournay
  5. Kenneth Tan
  6. Simon K Davy  Is a corresponding author
  7. Virginia M Weis  Is a corresponding author
  1. Victoria University of Wellington, New Zealand
  2. Western Oregon University, United States
  3. Dragonfly Data Science, New Zealand
  4. Planktovie sas, France
  5. Oregon State University, United States

Abstract

The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans and or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a 'super colonization'. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.

Data availability

The following previously published data sets were used
    1. Kitchen SA
    2. Crowder CM
    3. Poole AZ
    4. Weis VM
    5. Meyer E
    (2015) Data from: De novo assembly and characterization of four anthozoan (phylum Cnidaria) transcriptomes
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication. This work used the following resource built from this data: http://people.oregonstate.edu/~meyere/data.htm.
    1. Lehnert EM
    2. Burriesci MS
    3. Pringle JR
    (2012) Developing the anemone Aiptasia as a tractable model for cnidarian-dinoflagellate symbiosis: the transcriptome of aposymbiotic A. pallida
    Publicly available at the NCBI Sequence Read Archive (accession no. SRR696721). This work used the following resource built from this data: http://pringlelab.stanford.edu/projects.html.
    1. Baumgarten S
    2. Simakov O
    3. Esherick LY
    4. Liew YJ
    5. Lehnert EM
    6. Michell CT
    7. Li Y
    8. Hambleton EA
    9. Guse A
    10. Oates ME
    11. Gough J
    12. Weis VM
    13. Aranda M
    14. Pringle JR
    15. Voolstra CR
    (2015) The genome of Aiptasia, a sea anemone model for coral symbiosis
    Publicly available at NCBI BioProject (accession no. PRJNA261862). This work uses the following resource built from this data: http://aiptasia.reefgenomics.org/.
    1. Shinzato C
    2. Shoguchi E
    3. Kawashima T
    4. Hamada M
    5. Hisata K
    6. Tanaka M
    7. Fujie M
    8. Fujiwara M
    9. Koyanagi R
    10. Ikuta T
    11. Fujiyama A
    12. Miller DJ
    13. Satoh N
    (2011) Using the Acropora digitifera genome to understand coral responses to environmental change
    Publicly available at NCBI BioProject (accession no. PRJNA314803). This work uses the following resource built from this data: http://marinegenomics.oist.jp/coral/viewer/info?project_id=3.
    1. Shinzato C
    2. Shoguchi E
    3. Kawashima T
    4. Hamada M
    5. Hisata K
    6. Tanaka M
    7. Fujie M
    8. Fujiwara M
    9. Koyanagi R
    10. Ikuta T
    11. Fujiyama A
    12. Miller DJ
    13. Satoh N
    (2011) Using the Acropora digitifera genome to understand coral responses to environmental change
    Publicly available at NCBI BioProject (accession no. PRJDA67425). This work uses the following resource built from this data: http://marinegenomics.oist.jp/coral/viewer/info?project_id=3.
    1. Moya A
    2. Huisman L
    3. Ball EE
    4. Hayward DC
    5. Grasso LC
    6. Chua CM
    7. Woo HN
    8. Gattuso J-P
    9. Forêt S
    10. Miller DJ
    (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification
    Publicly available at NCBI BioProject (accession no. PRJNA74409). This work uses the following resource built from this data: http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html.

Article and author information

Author details

  1. Emilie-Fleur Neubaeur

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela Z Poole

    Department of Biology, Western Oregon University, Monmouth, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Philipp Neubauer

    Dragonfly Data Science, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4150-848X
  4. Olivier Detournay

    Planktovie sas, Allauch, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Kenneth Tan

    Department of Integrative Biology, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Simon K Davy

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    For correspondence
    Simon.Davy@vuw.ac.nz
    Competing interests
    The authors declare that no competing interests exist.
  7. Virginia M Weis

    Department of Integrative Biology, Oregon State University, Corvallis, United States
    For correspondence
    weisv@oregonstate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1826-2848

Funding

National Science Foundation (IOB0919073)

  • Virginia M Weis

Victoria University of Wellington

  • Emilie-Fleur Neubaeur

Oregon State University

  • Kenneth Tan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul G Falkowski, Rutgers University, United States

Version history

  1. Received: December 21, 2016
  2. Accepted: April 29, 2017
  3. Accepted Manuscript published: May 8, 2017 (version 1)
  4. Accepted Manuscript updated: May 9, 2017 (version 2)
  5. Version of Record published: May 26, 2017 (version 3)

Copyright

© 2017, Neubaeur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,872
    views
  • 324
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emilie-Fleur Neubaeur
  2. Angela Z Poole
  3. Philipp Neubauer
  4. Olivier Detournay
  5. Kenneth Tan
  6. Simon K Davy
  7. Virginia M Weis
(2017)
A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis
eLife 6:e24494.
https://doi.org/10.7554/eLife.24494

Share this article

https://doi.org/10.7554/eLife.24494

Further reading

    1. Ecology
    Jiayun Li, Paul Holford ... Xiaoge Nian
    Research Article

    Diaphorina citri serves as the primary vector for ‘Candidatus Liberibacter asiaticus (CLas),’ the bacterium associated with the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts and require extra energy expenditure. Therefore, understanding the molecular mechanisms linking metabolism and reproduction is of particular importance. In this study, we found adipokinetic hormone (DcAKH) and its receptor (DcAKHR) were essential for increasing lipid metabolism and fecundity in response to CLas infection in D. citri. Knockdown of DcAKH and DcAKHR not only resulted in the accumulation of triacylglycerol and a decline of glycogen, but also significantly decreased fecundity and CLas titer in ovaries. Combined in vivo and in vitro experiments showed that miR-34 suppresses DcAKHR expression by binding to its 3’ untranslated region, whilst overexpression of miR-34 resulted in a decline of DcAKHR expression and CLas titer in ovaries and caused defects that mimicked DcAKHR knockdown phenotypes. Additionally, knockdown of DcAKH and DcAKHR significantly reduced juvenile hormone (JH) titer and JH signaling pathway genes in fat bodies and ovaries, including the JH receptor, methoprene-tolerant (DcMet), and the transcription factor, Krüppel homolog 1 (DcKr-h1), that acts downstream of it, as well as the egg development related genes vitellogenin 1-like (DcVg-1-like), vitellogenin A1-like (DcVg-A1-like) and the vitellogenin receptor (DcVgR). As a result, CLas hijacks AKH/AKHR-miR-34-JH signaling to improve D. citri lipid metabolism and fecundity, while simultaneously increasing the replication of CLas, suggesting a mutualistic interaction between CLas and D. citri ovaries.

    1. Ecology
    Xueyou Li, William V Bleisch ... Xue-Long Jiang
    Research Article

    Spatial and temporal associations between sympatric species underpin biotic interactions, structure ecological assemblages, and sustain ecosystem functioning and stability. However, the resilience of interspecific spatiotemporal associations to human activity remains poorly understood, particularly in mountain forests where anthropogenic impacts are often pervasive. Here, we applied context-dependent Joint Species Distribution Models to a systematic camera-trap survey dataset from a global biodiversity hotspot in eastern Himalayas to understand how prominent human activities in mountain forests influence species associations within terrestrial mammal communities. We obtained 10,388 independent detections of 17 focal species (12 carnivores and five ungulates) from 322 stations over 43,163 camera days of effort. We identified a higher incidence of positive associations in habitats with higher levels of human modification (87%) and human presence (83%) compared to those located in habitats with lower human modification (64%) and human presence (65%) levels. We also detected a significant reduction of pairwise encounter time at increasing levels of human disturbance, corresponding to more frequent encounters between pairs of species. Our findings indicate that human activities can push mammals together into more frequent encounters and associations, which likely influences the coexistence and persistence of wildlife, with potential far-ranging ecological consequences.