A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis

  1. Emilie-Fleur Neubauer
  2. Angela Z Poole
  3. Philipp Neubauer
  4. Olivier Detournay
  5. Kenneth Tan
  6. Simon K Davy  Is a corresponding author
  7. Virginia M Weis  Is a corresponding author
  1. Victoria University of Wellington, New Zealand
  2. Western Oregon University, United States
  3. Dragonfly Data Science, New Zealand
  4. Planktovie sas, France
  5. Oregon State University, United States

Abstract

The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans and or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a 'super colonization'. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.

Data availability

The following previously published data sets were used
    1. Kitchen SA
    2. Crowder CM
    3. Poole AZ
    4. Weis VM
    5. Meyer E
    (2015) Data from: De novo assembly and characterization of four anthozoan (phylum Cnidaria) transcriptomes
    Available at Dryad Digital Repository under a CC0 Public Domain Dedication. This work used the following resource built from this data: http://people.oregonstate.edu/~meyere/data.htm.
    1. Lehnert EM
    2. Burriesci MS
    3. Pringle JR
    (2012) Developing the anemone Aiptasia as a tractable model for cnidarian-dinoflagellate symbiosis: the transcriptome of aposymbiotic A. pallida
    Publicly available at the NCBI Sequence Read Archive (accession no. SRR696721). This work used the following resource built from this data: http://pringlelab.stanford.edu/projects.html.
    1. Baumgarten S
    2. Simakov O
    3. Esherick LY
    4. Liew YJ
    5. Lehnert EM
    6. Michell CT
    7. Li Y
    8. Hambleton EA
    9. Guse A
    10. Oates ME
    11. Gough J
    12. Weis VM
    13. Aranda M
    14. Pringle JR
    15. Voolstra CR
    (2015) The genome of Aiptasia, a sea anemone model for coral symbiosis
    Publicly available at NCBI BioProject (accession no. PRJNA261862). This work uses the following resource built from this data: http://aiptasia.reefgenomics.org/.
    1. Shinzato C
    2. Shoguchi E
    3. Kawashima T
    4. Hamada M
    5. Hisata K
    6. Tanaka M
    7. Fujie M
    8. Fujiwara M
    9. Koyanagi R
    10. Ikuta T
    11. Fujiyama A
    12. Miller DJ
    13. Satoh N
    (2011) Using the Acropora digitifera genome to understand coral responses to environmental change
    Publicly available at NCBI BioProject (accession no. PRJNA314803). This work uses the following resource built from this data: http://marinegenomics.oist.jp/coral/viewer/info?project_id=3.
    1. Shinzato C
    2. Shoguchi E
    3. Kawashima T
    4. Hamada M
    5. Hisata K
    6. Tanaka M
    7. Fujie M
    8. Fujiwara M
    9. Koyanagi R
    10. Ikuta T
    11. Fujiyama A
    12. Miller DJ
    13. Satoh N
    (2011) Using the Acropora digitifera genome to understand coral responses to environmental change
    Publicly available at NCBI BioProject (accession no. PRJDA67425). This work uses the following resource built from this data: http://marinegenomics.oist.jp/coral/viewer/info?project_id=3.
    1. Moya A
    2. Huisman L
    3. Ball EE
    4. Hayward DC
    5. Grasso LC
    6. Chua CM
    7. Woo HN
    8. Gattuso J-P
    9. Forêt S
    10. Miller DJ
    (2012) Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification
    Publicly available at NCBI BioProject (accession no. PRJNA74409). This work uses the following resource built from this data: http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html.

Article and author information

Author details

  1. Emilie-Fleur Neubauer

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela Z Poole

    Department of Biology, Western Oregon University, Monmouth, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Philipp Neubauer

    Dragonfly Data Science, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4150-848X
  4. Olivier Detournay

    Planktovie sas, Allauch, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Kenneth Tan

    Department of Integrative Biology, Oregon State University, Corvallis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Simon K Davy

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    For correspondence
    Simon.Davy@vuw.ac.nz
    Competing interests
    The authors declare that no competing interests exist.
  7. Virginia M Weis

    Department of Integrative Biology, Oregon State University, Corvallis, United States
    For correspondence
    weisv@oregonstate.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1826-2848

Funding

National Science Foundation (IOB0919073)

  • Virginia M Weis

Victoria University of Wellington

  • Emilie-Fleur Neubauer

Oregon State University

  • Kenneth Tan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Neubauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,894
    views
  • 328
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emilie-Fleur Neubauer
  2. Angela Z Poole
  3. Philipp Neubauer
  4. Olivier Detournay
  5. Kenneth Tan
  6. Simon K Davy
  7. Virginia M Weis
(2017)
A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis
eLife 6:e24494.
https://doi.org/10.7554/eLife.24494

Share this article

https://doi.org/10.7554/eLife.24494

Further reading

    1. Developmental Biology
    2. Ecology
    Stav Talal, Jon F Harrison ... Arianne J Cease
    Research Article

    Organisms require dietary macronutrients in specific ratios to maximize performance, and variation in macronutrient requirements plays a central role in niche determination. Although it is well recognized that development and body size can have strong and predictable effects on many aspects of organismal function, we lack a predictive understanding of ontogenetic or scaling effects on macronutrient intake. We determined protein and carbohydrate intake throughout development on lab populations of locusts and compared to late instars of field populations. Self-selected protein:carbohydrate targets declined dramatically through ontogeny, due primarily to declines in mass-specific protein consumption rates which were highly correlated with declines in specific growth rates. Lab results for protein consumption rates partly matched results from field-collected locusts. However, field locusts consumed nearly double the carbohydrate, likely due to higher activity and metabolic rates. Combining our results with the available data for animals, both across species and during ontogeny, protein consumption scaled predictably and hypometrically, demonstrating a new scaling rule key for understanding nutritional ecology.

    1. Ecology
    Ivan Pokrovsky, Teja Curk ... Martin Wikelski
    Research Article

    Advances in tracking technologies have revealed the diverse migration patterns of birds, which are critical for range mapping and population estimation. Population trends are usually estimated in breeding ranges where birds remain stationary, but for species that breed in remote areas like the Arctic, these trends are often assessed in over-wintering ranges. Assessing population trends during the wintering season is challenging due to the extensive movements of birds in these ranges, which requires a deep understanding of the movement dynamics. However, these movements remain understudied, particularly in the mid-latitudes, where many Arctic breeders overwinter, increasing uncertainty in their ranges and numbers. Here, we show that the Arctic breeding raptor Rough-legged buzzard, which overwinters in the mid-latitudes, has a specific wintering strategy. After migrating ca. 1500 km from the Arctic to mid-latitudes, the birds continue to move throughout the entire over-wintering period, traveling another 1000 km southwest and then back northeast as the snowline advances. This continuous movement makes their wintering range dynamic throughout the season. In essence, this movement represents an extension of the quick migration process, albeit at a slower pace, and we have termed this migration pattern ‘foxtrot migration’, drawing an analogy to the alternating fast and slow movements of the foxtrot dance. These results highlight the potential errors in range mapping from single mid-winter surveys and emphasize the importance of this migration pattern in assessing the conservation status of bird species. Understanding this migration pattern could help to correctly estimate bird populations in over-wintering ranges, which is especially important for species that nest in hard-to-reach regions such as the Arctic.