The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision

  1. Frans Vinberg
  2. Tian Wang
  3. Alicia De Maria
  4. Haiqing Zhao
  5. Steven Bassnett
  6. Jeannie Chen  Is a corresponding author
  7. Vladimir J Kefalov  Is a corresponding author
  1. Washington University in St. Louis, United States
  2. Keck School of Medicine, University of Southern California, United States
  3. Johns Hopkins University, United States

Abstract

Calcium (Ca2+) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na+/Ca2+, K+ exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.

Article and author information

Author details

  1. Frans Vinberg

    Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tian Wang

    Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alicia De Maria

    Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Haiqing Zhao

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Steven Bassnett

    Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeannie Chen

    Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
    For correspondence
    jeannie@med.usc.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Vladimir J Kefalov

    Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, United States
    For correspondence
    Kefalov@vision.wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1659-008X

Funding

National Eye Institute (EY019312 EY025696 EY012155 EY026651)

  • Frans Vinberg
  • Tian Wang
  • Alicia De Maria
  • Steven Bassnett
  • Jeannie Chen
  • Vladimir J Kefalov

Research to Prevent Blindness

  • Frans Vinberg
  • Alicia De Maria
  • Steven Bassnett
  • Vladimir J Kefalov

Ella ja Georg Ehrnroothin Säätiö

  • Frans Vinberg

National Institute on Deafness and Other Communication Disorders (DC007395)

  • Haiqing Zhao

National Eye Institute (EY027387)

  • Jeannie Chen
  • Vladimir J Kefalov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A-3381-01) of the University of Washington in St. Louis..

Copyright

© 2017, Vinberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,069
    views
  • 262
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Frans Vinberg
  2. Tian Wang
  3. Alicia De Maria
  4. Haiqing Zhao
  5. Steven Bassnett
  6. Jeannie Chen
  7. Vladimir J Kefalov
(2017)
The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision
eLife 6:e24550.
https://doi.org/10.7554/eLife.24550

Share this article

https://doi.org/10.7554/eLife.24550

Further reading

    1. Neuroscience
    Agnieszka Glica, Katarzyna Wasilewska ... Katarzyna Jednoróg
    Research Article

    The neural noise hypothesis of dyslexia posits an imbalance between excitatory and inhibitory (E/I) brain activity as an underlying mechanism of reading difficulties. This study provides the first direct test of this hypothesis using both electroencephalography (EEG) power spectrum measures in 120 Polish adolescents and young adults (60 with dyslexia, 60 controls) and glutamate (Glu) and gamma-aminobutyric acid (GABA) concentrations from magnetic resonance spectroscopy (MRS) at 7T MRI scanner in half of the sample. Our results, supported by Bayesian statistics, show no evidence of E/I balance differences between groups, challenging the hypothesis that cortical hyperexcitability underlies dyslexia. These findings suggest that alternative mechanisms must be explored and highlight the need for further research into the E/I balance and its role in neurodevelopmental disorders.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.