The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision
Abstract
Calcium (Ca2+) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na+/Ca2+, K+ exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.
Article and author information
Author details
Funding
National Eye Institute (EY019312 EY025696 EY012155 EY026651)
- Frans Vinberg
- Tian Wang
- Alicia De Maria
- Steven Bassnett
- Jeannie Chen
- Vladimir J Kefalov
Research to Prevent Blindness
- Frans Vinberg
- Alicia De Maria
- Steven Bassnett
- Vladimir J Kefalov
Ella ja Georg Ehrnroothin Säätiö
- Frans Vinberg
National Institute on Deafness and Other Communication Disorders (DC007395)
- Haiqing Zhao
National Eye Institute (EY027387)
- Jeannie Chen
- Vladimir J Kefalov
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A-3381-01) of the University of Washington in St. Louis..
Copyright
© 2017, Vinberg et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,093
- views
-
- 266
- downloads
-
- 33
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 33
- citations for umbrella DOI https://doi.org/10.7554/eLife.24550